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GEOMETRY OF BILINEAR FORMS ON THE PLANE WITH
THE OCTAGONAL NORM

Sung Guen KIM1

Abstract

Let R2
o(w) be the plane with the octagonal norm with weight 0 < w,w 6= 1

‖(x, y)‖o(w) = max
{
|x|+ w|y|, |y|+ w|x|

}
.

In this paper we classify all extreme, exposed and smooth points of the closed
unit balls of L(2R2

o(w)) and Ls(
2R2

o(w)), where L(2R2
o(w)) is the space of bi-

linear forms on R2
o(w), and Ls(

2R2
o(w)) is the subspace of L(2l2∞,θ) consisting

of symmetric bilinear forms.
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1 Introduction

Throughout the paper, we let n,m ∈ N, n,m ≥ 2. We write BE for the closed
unit ball of a real Banach space E and the dual space of E is denoted by E∗. An
element x ∈ BE is called an extreme point of BE if y, z ∈ BE with x = 1

2(y + z)
implies x = y = z. An element x ∈ BE is called an exposed point of BE if there
is f ∈ E∗ so that f(x) = 1 = ‖f‖ and f(y) < 1 for every y ∈ BE \ {x}. It is easy
to see that every exposed point of BE is an extreme point. An element x ∈ BE is
called a smooth point of BE if there is unique f ∈ E∗ so that f(x) = 1 = ‖f‖. We
denote by extBE , expBE and smBE the set of extreme points, the set of exposed
points and the set of smooth points of BE , respectively. A mapping P : E → R is
a continuous n-homogeneous polynomial if there exists a continuous n-linear form
T on the product E × · · · ×E such that P (x) = T (x, · · · , x) for every x ∈ E. We
denote by P(nE) the Banach space of all continuous n-homogeneous polynomials
from E into R endowed with the norm ‖P‖ = sup‖x‖=1 |P (x)|. We denote by
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L(nE) the Banach space of all continuous n-linear forms on E endowed with the
norm ‖T‖ = sup‖xk‖=1 |T (x1, · · · , xn)|. Ls(nE) denote the closed subspace of all
continuous symmetric n-linear forms on E. Notice that L(nE) is identified with

the dual of n-fold projective tensor product
⊗̂

π,nE. With this identification, the

action of a continuous n-linear form T as a bounded linear functional on
⊗̂

π,nE
is given by 〈 k∑

i=1

x(1),i ⊗ · · · ⊗ x(n),i, T
〉

=
k∑
i=1

T
(
x(1),i, · · · , x(n),i

)
.

Notice also that Ls(
nE) is identified with the dual of n-fold symmetric projec-

tive tensor product
⊗̂

s,π,nE. With this identification, the action of a continuous

symmetric n-linear form T as a bounded linear functional on
⊗̂

s,π,nE is given by

〈 k∑
i=1

1

n!

(∑
σ

xσ(1),i ⊗ · · · ⊗ xσ(n),i
)
, T
〉

=
k∑
i=1

T
(
x(1),i, · · · , x(n),i

)
,

where σ goes over all permutations on {1, . . . , n}. For more details about the
theory of polynomials and multilinear mappings on Banach spaces, we refer to
[8].

Let us sketch the history of classification problems of the extreme points and
the exposed points of the unit ball of continuous n-homogeneous polynomials on
a Banach space.

We let lnp = Rn for every 1 ≤ p ≤ ∞ equipped with the lp-norm. Choi et al.
([3]–[5]) initiated and classified extBP(2l2p)

for p = 1, 2. Choi and Kim [7] classi-

fied expBP(2l2p)
for p = 1, 2,∞. Grecu [12] classified extBP(2l2p)

for 1 < p < 2 or

2 < p <∞. Kim et al. [35] showed that if E is a separable real Hilbert space with
dim(E) ≥ 2, then, extBP(2E) = expBP(2E). Kim [16] classified expBP(2l2p)

for 1 ≤
p ≤ ∞. Kim ([18], [20]) characterized extBP(2d∗(1,w)2), where d∗(1, w)2 = R2 with

an octagonal norm ‖(x, y)‖w = max
{
|x|, |y|, |x|+|y|1+w

}
for 0 < w < 1. Kim [25] clas-

sified expBP(2d∗(1,w)2) and showed that expBP(2d∗(1,w)2) 6= extBP(2d∗(1,w)2). Re-
cently, Kim ([30], [33]) classified extBP(2R2

h( 12 )
) and expBP(2R2

h( 12 )
), where R2

h( 1
2
)

=

R2 with a hexagonal norm ‖(x, y)‖h( 1
2
) = max

{
|y|, |x|+ 1

2 |y|
}
.

Parallel to the classification problems of extBP(nE) and expBP(nE), it seems
to be very natural to study the classification problems of the extreme points and
the exposed points of the unit ball of continuous (symmetric) multilinear forms
on a Banach space.

Kim [17] initiated and classified extBLs(2l2∞) and expBLs(2l2∞). It was shown
that extBLs(2l2∞) = expBLs(2l2∞).

Kim ([19], [21], [22], [24]) classified extBLs(2d∗(1,w)2), extBL(2d∗(1,w)2),
expBLs(2d∗(1,w)2), and expBL(2d∗(1,w)2). Kim ([28], [29]) also classified extBLs(2l3∞)

and expBLs(3l2∞). It was shown that extBLs(2l3∞) = expBLs(2l3∞) and extBLs(3l2∞) =
expBLs(3l2∞). Kim [32] characterized extBL(2ln∞) and extBLs(2ln∞), and showed that
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expBL(2ln∞) = extBL(2ln∞) and expBLs(2ln∞) = extBLs(2ln∞). Kim [34] characterized
extBL(2l3∞) and expBL(2l3∞). Kim [35] characterized smBLs(nl2∞). Kim [36] stud-
ied extBL(2l∞). Cavalcante et al. [2] characterized extBL(nlm∞). Recently, Kim [37]

classified extBL(nl2∞) and extBLs(nl2∞). It was shown that | extBL(nl2∞)| = 2(2
n) and

| extBLs(nl2∞)| = 2n+1, and that expBL(nl2∞) = extBL(nl2∞) and expBLs(nl2∞) =
extBLs(nl2∞). We refer to ([1]–[7], [9]–[52] and references therein) for some re-
cent work about extremal properties of homogeneous polynomials and multilinear
forms on Banach spaces.

Let R2
o(w) denote R2 with the octagonal norm with weight 0 < w,w 6= 1

‖(x, y)‖o(w) = max
{
|x|+ w|y|, |y|+ w|x|

}
.

Let F = L(2R2
o(w)) or Ls(

2R2
o(w)). First we present formulae for the norm of

T ∈ L(2R2
o(w)). Using these formulae, we classify the extreme points of the unit

ball of F. We show that

extBLs(2R2
o(w)

) 6= extBL(2R2
o(w)

) ∩ Ls(
2R2

o(w)) for w ∈ [
√

2− 1,
√

2 + 1]\{1},

extBLs(2R2
o(w)

) = extBL(2R2
o(w)

) ∩ Ls(
2R2

o(w)) for w ∈ (0,∞)\[
√

2− 1,
√

2 + 1].

We present formulae for the norm of f ∈ L(2R2
o(w))

∗. Using these formulae, we
show that every extreme point is exposed in this space. We show that

expBLs(2R2
o(w)

) 6= expBL(2R2
o(w)

) ∩ Ls(
2R2

o(w)) for w ∈ [
√

2− 1,
√

2 + 1]\{1},

expBLs(2R2
o(w)

) = expBL(2R2
o(w)

) ∩ Ls(
2R2

o(w)) for w ∈ (0,∞)\[
√

2− 1,
√

2 + 1].

We classify the smooth points of the unit balls of the spaces of symmetric bilinear
forms and bilinear forms on R2

o(w), respectively.

We show that smBL(2R2
o(w)

)

⋂
Ls(

2R2
o(w)) is a proper subset of smBLs(2R2

o(w)
).

2 Computation of the norm of bilinear forms of
L(2R2

o(w))

Let R2
o(w) denote R2 with the octagonal norm with weight 0 < w,w 6= 1

‖(x, y)‖o(w) = max
{
|x|+ w|y|, |y|+ w|x|

}
.

Notice that

‖(x, y)‖o(w) = ‖(y, x)‖o(w) = ‖(x,−y)‖o(w) for (x, y) ∈ R2
o(w).

Notice that if 0 < w < 1, then

extBR2
o(w)

=
{
± (1, 0),±((1 + w)−1,±(1 + w)−1),±(0, 1)

}
,
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and that if w > 1, then

extBR2
o(w)

=
{
± (w−1, 0),±((1 + w)−1,±(1 + w)−1),±(0, w−1)

}
.

Let T ∈ L(2R2
o(w)) be such that T = ax1x2 +by1y2 +cx1y2 +dx2y1. For simplicity,

we will denote T by (a, b, c, d).

Theorem 1. Let 0 < w,w 6= 1 and T ((x1, y1), (x2, y2)) = ax1x2+by1y2+cx1y2+
dx2y1 ∈ L(2R2

o(w)). Then there exists (unique) T
′
((x1, y1), (x2, y2)) = a∗x1x2 +

b∗y1y2 + c∗x1y2 + d∗x2y1 ∈ L(2R2
o(w)) such that a∗, b∗, c∗, d∗ ∈ {±a,±b,±c,±d}

with a∗ ≥ b∗ ≥ 0, c∗ ≥ |d∗| and ‖T‖ = ‖T ′‖ and that T is extreme (exposed,
respectively) if and only if T

′
is extreme (exposed, respectively).

Proof. If a < 0, taking −T , we assume a ≥ 0.

Case 1. |b| > a

Let T
′
1((x1, y1), (x2, y2)) := T ((y1, sign(b)x1), (y2, x2))

= |b|x1x2 + |a|y1y2 + sign(b)dx1y2 + cx2y1.

Then ‖T ′1‖ = ‖T‖ and T is extreme if and only if T
′
1 is extreme. If sign(b)d ≥ |c|,

then the bilinear form T
′
1 satisfies the condition of the theorem. Suppose that

sign(b)d < |c|.

Subcase 1. c ≥ 0

If sign(b)d = |d| or (sign(b)d = −|d|, |d| ≤ |c|),

let T
′
2((x1, y1), (x2, y2)) := T

′
1((x2, y2), (x1, y1))

= |b|x1x2 + |a|y1y2 + |c|x1y2 + sign(b)dx2y1.

Then ‖T ′2‖ = ‖T‖ and T is extreme (exposed, respectively) if and only if T
′
2 is

extreme (exposed, respectively). Hence, the bilinear form T
′
2 satisfies the condition

of the theorem. If sign(b)d = −|d|, |d| > |c|,

let T
′
2((x1, y1), (x2, y2)) := T

′
1((x2,−y2), (x1,−y1))

= |b|x1x2 + |a|y1y2 + |sign(b)d|x1y2 − |c|x2y1.

Then ‖T ′2‖ = ‖T‖ and T is extreme (exposed, respectively) if and only if T
′
2 is

extreme (exposed, respectively). Hence, the bilinear form T
′
2 satisfies the condition

of the the theorem.

Subcase 2. c < 0

Let T
′
3((x1, y1), (x2, y2)) := T

′
1((−x1, y1), (−x2, y2))

= |b|x1x2 + |a|y1y2 − sign(b)dx1y2 + |c|x2y1.

Applying Subcase 1 to T
′
3, we can find a bilinear form T

′
which satisfies the

condition of the theorem.
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Case 2. |b| ≤ a

Let T
′
4((x1, y1), (x2, y2)) := T ((x1, y1), (x2, sign(b)y2))

= ax1x2 + |b|y1y2 + sign(b)cx1y2 + dx2y1.

Applying Case 1 to T
′
4, we can find a bilinear form T

′
which satisfies the condition

of the theorem.

Theorem 2. Let 0 < w,w 6= 1 and T ∈ L(2R2
o(w)) be such that T ((x1, y1), (x2, y2))

= ax1x2 + by1y2 + cx1y2 + dx2y1 = (a, b, c, d) for some a, b, c, d ∈ R. Then:
(a) If 0 < w < 1, then

‖T‖ = max
{
|a|, |b|, |c|, |d|, (1 + w)−1(|a|+ |c|), (1 + w)−1(|a|+ |d|),

(1 + w)−1(|b|+ |c|), (1 + w)−1(|b|+ |d|), (1 + w)−2(|a− b|+ |c− d|),

(1 + w)−2(|a+ b|+ |c+ d|)
}

(b) If 1 < w, then

‖T‖ = max
{
w−2|a|, w−2|b|, w−2|c|, w−2|d|, (w(1 + w))−1(|a|+ |c|),

(w(1 + w))−1(|a|+ |d|), (w(1 + w))−1(|b|+ |c|),
(w(1 + w))−1(|b|+ |d|), (1 + w)−2(|a− b|+ |c− d|),

(1 + w)−2(|a+ b|+ |c+ d|)
}
.

Proof. (a). Let 0 < w < 1. Notice that

extBR2
o(w)

=
{
± (1, 0),±((1 + w)−1,±(1 + w)−1),±(0, 1)

}
.

By the bilinearity of T , we have

‖T‖

= sup
{
|T ((x1, y1), (x2, y2))| : (xj , yj) ∈ extBR2

o(w)
for j = 1, 2

}
= max

{
|T ((1, 0), (1, 0))|, |T ((0, 1), (0, 1))|, |T ((1, 0), (0, 1))|, |T ((0, 1), (1, 0))|,

|T ((1, 0),±((1 + w)−1,±(1 + w)−1))|, |T (±((1 + w)−1,±(1 + w)−1), (1, 0))|,
|T ((0, 1),±((1 + w)−1,±(1 + w)−1))|, |T (±((1 + w)−1,±(1 + w)−1), (0, 1))|,
|T (±((1 + w)−1,±(1 + w)−1), ((1 + w)−1,−(1 + w)−1)|,
|T (((1 + w)−1,−(1 + w)−1), ((1 + w)−1, (1 + w)−1))|,
|T (((1 + w)−1, (1 + w)−1), ((1 + w)−1, (1 + w)−1))|,

|T (((1 + w)−1,−(1 + w)−1), ((1 + w)−1,−(1 + w)−1))|
}

= max
{
|a|,|b|,|c|,|d|, (1 + w)−1(|a|+|c|), (1+w)−1(|a|+|d|), (1+w)−1(|b|+|c|),

(1 + w)−1(|b|+ |d|), (1 + w)−2(|a− b|+ |c− d|), (1 + w)−2(|a+ b|+ |c+ d|)
}
.
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(b). Let w > 1.

Claim. ‖T‖L(2R2
o(w)

) =
∥∥∥w−2T∥∥∥

L(2R2
o(1/w)

)
.

Notice that

‖(w−1x,w−1y)‖o(w) = ‖(x, y)‖o(1/w)

for (x, y) ∈ R2. It follows that∥∥∥w−2T∥∥∥
L(2R2

o(1/w)
)

= sup
‖(xj ,yj)‖o(1/w)=1, j=1,2

∣∣∣w−2ax1x2 + w−2by1y2 + w−2cx1y2 + w−2dx2y1

∣∣∣
= sup

‖(w−1xj ,w−1yj)‖o(w)=1, j=1,2

∣∣∣a(w−1x1)(w
−1x2) + w−2b(w−1y1)(w

−1y2)

+ w−2c(w−1x1)(w
−1y2) + w−2d(w−1x2)(w

−1y1)
∣∣∣

= ‖T‖L(2R2
o(w)

).

By (a), we have

‖T‖L(2R2
o(w)

) =
∥∥∥(w−2a,w−2b, w−2c, w−2d)

∥∥∥
L(2R2

o(1/w)
)

= max
{
w−2|a|, w−2|b|, w−2|c|, w−2|d|, (1 + w−1)−1(w−2|a|+ w−2|c|),

(1 + w−1)−1(w−2|a|+ w−2|d|), (1 + w−1)−1(w−2|b|+ w−2|c|),
(1 + w−1)−1(w−2|b|+ w−2|d|), (1 + w−1)−2(w−2|a− b|+ w−2|c− d|),

(1 + w−1)−2(w−2|a+ b|+ w−2|c+ d|)
}

=
{
w−2|a|, w−2|b|, w−2|c|, w−2|d|, (w(1 + w))−1(|a|+ |c|),

(w(1 + w))−1(|a|+ |d|), (w(1 + w))−1(|b|+ |c|),
(w(1 + w))−1(|b|+ |d|), (1 + w)−2(|a− b|+ |c− d|),

(1 + w)−2(|a+ b|+ |c+ d|)
}
.

3 The extreme points of the unit ball of Ls(
2R2

o(w))

Let 0 < w,w 6= 1 and T ∈ Ls(
2R2

o(w)) be such that T = ax1x2 + by1y2 +

c(x1y2 + x2y1). For simplicity, we will denote T by (a, b, c).
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Theorem 3. (a) If 0 < w ≤
√

2− 1, then

extBLs(2R2
o(w)

) =
{
± (1, w2,±w),±(w2, 1,±w),±(1,−(w2 + 2w),±w),

±(−(w2 + 2w), 1,±w),±
((1 + w)2

2
,−(1 + w)2

2
,±1− w2

2

)
±
(1− w2

2
,−(1− w2)

2
,±(1 + w)2

2

)}
.

(b) If
√

2− 1 < w < 1, then,

extBLs(2R2
o(w)

) =
{
± (1, w2,±w),±(w2, 1,±w),±(w,w2 + w − 1,±1),

±(w2 + w − 1, w,±1),±
(

1, 1,
±(w2 + 2w − 1)

2

)
,

±
(w2 + 2w − 1

2
,
w2 + 2w − 1

2
,±1

)
,±(1,−1,±w),

±(w,−w,±1)
}
.

(c) If 1 < w <
√

2 + 1, then,

extBLs(2R2
o(w)

) =
{
± (w2, 1,±w),±(1, w2,±w),±(w,−w2 + w + 1,±w2),

±(−w2 + w + 1, w,±w2),±
(
w2, w2,

±(−w2 + 2w + 1)

2

)
,

±
(−(w2 + 2w − 1)

2
,
−(w2 + 2w − 1)

2
,±w2

)
,

±(w2,−w2,±w),±(w,−w,±w2)
}
.

(d) If
√

2 + 1 < w, then,

extBLs(2R2
o(w)

) =
{
± (w2, 1,±w),±(1, w2,±w),±(w2,−(1 + 2w),±w),

±(−(1 + 2w), w2,±w),±
((1 + w)2

2
,−(1 + w)2

2
,±w

2 − 1

2

)
±
(w2 − 1

2
,−(w2 − 1)

2
,±(1 + w)2

2

)}
.

Proof. Let T ∈ extBLs(2R2
o(w)

) be such that T = (a, b, c). By Theorem 1, we may

assume that a ≥ |b| and c ≥ 0. Suppose that 0 < w < 1.

Case 1. b ≥ 0

Subcase 1. b = a

Suppose that a = b = 1. By Theorem 2(a), c ≤ w. If c = w, then T = (1, 1, w),
which is a contradiction because ‖T‖ = 1. Hence, c < w. Since T ∈ extBLs(2R2

o(w)
),
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we have 1
(1+w)2

(a+b+2c) = 1, which shows that T =
(

1, 1, w
2+2w−1

2

)
for
√

2−1 ≤
w < 1.

Claim 1. T =
(

1, 1, w
2+2w−1

2

)
∈ extBLs(2R2

o(w)
) for

√
2− 1 ≤ w < 1.

Let

T± =
(

1, 1,
w2 + 2w − 1

2
± γ
)

be such that 1 = ‖T±‖ for some γ ∈ R. By Theorem 2(a), we have

(1 + w)2 ± 2γ

(1 + w)2
≤ 1,

hence, γ = 0.

Suppose that a = b < 1. If c < 1, since T ∈ extBLs(2R2
o(w)

), we have 1
1+w (a +

c) = 1
(1+w)2

(a + b + 2c) = 1, which shows that w2 = 1, which is a contradiction.

Hence, c = 1. Since T ∈ extBLs(2R2
o(w)

), we have 1
1+w (a+ c) = 1 or 1

1+w (a+ c) =

1
(1+w)2

(a + b + 2c) = 1. If 1
1+w (a + c) = 1, then T = (w,w, 1), which is a

contradiction because ‖T‖ = 1. If 1
1+w (a + c) = 1

(1+w)2
(a + b + 2c) = 1, then

T = (w,w2 + w − 1, 1), which is impossible because a = b.

Subcase 2: b < a

Suppose that a = 1. By Theorem 2(a), c ≤ w. If c = w, then 1
(1+w)2

(a+b+2c) =

1, hence, T = (1, w2, w) for 0 < w < 1.

Claim 2. T = (1, w2, w) ∈ extBLs(2R2
o(w)

) for 0 < w < 1.

Let

T± = (1, w2 ± δ, w ± γ)

be such that 1 = ‖T±‖ for some δ, γ ∈ R. By Theorem 2(a), we have

1

1 + w
(1 + w ± δ) ≤ 1,

1

(1 + w)2
((1 + w)2 ± (δ + 2γ)) ≤ 1,

hence, δ = γ = 0. If c < w, then 1
(1+w)2

(a+ b+ 2c) = 1. Let

T± = (a, b± 2

n
, c∓ 1

n
)

so that 1 = ‖T±‖ for some big n ∈ N, which shows that T is not extreme. It is a
contradiction.

Suppose that a < 1. If c < 1, then 1 = 1
1+w (a + c) or 1 = 1

(1+w)2
(a + b + 2c),

which is a contradiction because T ∈ extBLs(2R2
o(w)

). Hence, c = 1. Since T ∈
extBLs(2R2

o(w)
), we have 1

1+w (a + c) = 1
(1+w)2

(a + b + 2c) = 1, then T = (w,w2 +

w − 1, 1) for
√
5−1
2 ≤ w < 1.
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Claim 3. T = (w,w2 + w − 1, 1) ∈ extBLs(2R2
o(w)

) for
√
5−1
2 ≤ w < 1.

Let
T± = (w ± ε, w2 + w − 1± δ, 1)

be such that 1 = ‖T±‖ for some ε, δ ∈ R. By Theorem 2(a), we have

1 =
1

1 + w
(1 + w ± ε) ≤ 1,

1

(1 + w)2
((1 + w)2 ± (ε+ δ)) ≤ 1,

hence, ε = δ = 0.

Case 2: b < 0

Subcase 1: |b| = a

Suppose that a = |b| = 1. By Theorem 2(a), c ≤ w. If c = w, then T =
(1,−1, w) for

√
2− 1 ≤ w < 1.

Claim 4. T = (1,−1, w) ∈ extBLs(2R2
o(w)

) for
√

2− 1 ≤ w < 1.

Let
T± = (1,−1, w ± γ)

be such that 1 = ‖T±‖ for some γ ∈ R. By Theorem 2(a), we have

1

1 + w
(1 + w ± γ) ≤ 1,

hence, γ = 0.
If c < w, then 1

(1+w)2
(a− b) = 1, hence, T = (1,−1, c) for 0 ≤ c < w =

√
2−1,

which is a contradiction because T ∈ extBLs(2R2
o(
√
2−1)

).

Suppose that a = |b| < 1. Suppose that c < 1. Note that if 1
1+w (a + c) < 1,

then 1
(1+w)2

(a− b) = 1 or 1
(1+w)2

(a+ b+ 2c) = 1, which is a contradiction because

T ∈ extBLs(2R2
o(w)

). Hence, 1
1+w (a+ c) = 1.

If 1
(1+w)2

(a− b) = 1, then T =
(
(1+w)2

2 ,− (1+w)2

2 , 1−w
2

2

)
for 0 < w ≤

√
2− 1.

Claim 5. T =
(
(1+w)2

2 ,− (1+w)2

2 , 1−w
2

2

)
∈ extBLs(2R2

o(w)
) for 0 < w ≤

√
2− 1.

Let

T± =
((1 + w)2

2
± ε,−(1 + w)2

2
± δ, 1− w2

2
± γ
)

be such that 1 = ‖T±‖ for some ε, δ, γ ∈ R. Since∣∣∣T±((1, 0),
( 1

1 + w
,

1

1 + w

))∣∣∣ ≤ 1 (j = 1, 2),

we have ε+ γ = 0. Since∣∣∣T±((0, 1),
( 1

1 + w
,− 1

1 + w

))∣∣∣ ≤ 1 (j = 1, 2),
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we have −δ + γ = 0. Since∣∣∣T±(( 1

1 + w
,

1

1 + w

)
,
( 1

1 + w
,− 1

1 + w

))∣∣∣ ≤ 1 (j = 1, 2),

we have ε− δ = 0. Hence, ε = δ = γ = 0.

If 1
(1+w)2

(a+b+2c) = 1, then T =
(
1−w2

2 ,− (1−w2)
2 , (1+w)

2

2

)
for 0 < w ≤

√
2−1.

Claim 6. T =
(
1−w2

2 ,− (1−w2)
2 , (1+w)

2

2

)
∈ extBLs(2R2

o(w)
) for 0 < w ≤

√
2− 1.

Let

T± =
(1− w2

2
± ε,−(1− w2)

2
± δ, (1 + w)2

2
± γ
)

be such that 1 = ‖T±‖ for some ε, δ, γ ∈ R. Since∣∣∣T±((1, 0),
( 1

1 + w
,− 1

1 + w

))∣∣∣ ≤ 1 (j = 1, 2),

we have ε− γ = 0. Since∣∣∣T±((0, 1),
( 1

1 + w
,− 1

1 + w

))∣∣∣ ≤ 1 (j = 1, 2),

we have −δ + γ = 0. Since∣∣∣T±(( 1

1 + w
,

1

1 + w

)
,
( 1

1 + w
,

1

1 + w

))∣∣∣ ≤ 1 (j = 1, 2),

we have ε+ δ + 2γ = 0. Hence, ε = δ = γ = 0.
Suppose that c = 1. By Theorem 2(a), a ≤ w. If a = w, then T = (w,−w, 1)√

2− 1 ≤ w < 1.

Claim 7. T = (w,−w, 1) ∈ extBLs(2R2
o(w)

) for
√

2− 1 ≤ w < 1

Let
T± = (w ± ε,−w ± δ, 1)

be such that 1 = ‖T±‖ for some ε, δ ∈ R. By Theorem 2(a), we have

1

1 + w
(1 + w ± ε) ≤ 1,

1

1 + w
(1 + | − w ± δ|) ≤ 1,

hence, ε = δ = 0.

Subcase 2. |b| < a

Suppose that a = 1. By Theorem 2(a), c ≤ w. If c = w, then 1
(1+w)2

(a−b) = 1,

hence, T = (1,−(2w + w2), w) for 0 < w ≤
√

2− 1.

Claim 8. T = (1,−(w2 + 2w), w) ∈ extBLs(2R2
o(w)

) for 0 < w ≤
√

2− 1.

Let
T± = (1,−(w2 + 2w)± δ, w ± γ)
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be such that 1 = ‖T±‖ for some δ, γ ∈ R. By Theorem 2(a), we have

1

1 + w
(1 + w ± γ) ≤ 1,

1

(1 + w)2
((1 + w)2 ± δ) ≤ 1,

hence, δ = γ = 0.

If c < w, then 1
(1+w)2

(a − b) ≤ 1 and 1
(1+w)2

(a + b + 2c) < 1, which is a

contradiction because T ∈ extBLs(2R2
o(w)

). Suppose that a < 1. Suppose that

c = 1. By Theorem 2(a), a ≤ w. If a < w, then 1
(1+w)2

(a− b) < 1 and 1
(1+w)2

(a+

b + 2c) = 1, which is a contradiction because T ∈ extBLs(2R2
o(w)

). Hence, a = w

and 1
(1+w)2

(a+ b+ 2c) = 1, for
√

2− 1 < w <
√
5−1
2 .

Claim 9. T = (w,w2 + w − 1, 1) ∈ extBLs(2R2
o(w)

) for
√

2− 1 < w <
√
5−1
2 .

Let

T± = (w ± ε, w2 + w − 1± δ, 1)

be such that 1 = ‖T±‖ for some ε, δ ∈ R. By Theorem 2(a), we have

1 =
1

1 + w
(1 + w ± ε) ≤ 1,

1

(1 + w)2
((1 + w)2 ± (ε+ δ)) ≤ 1,

hence, ε = δ = 0. If c < 1, then 1
1+w (a+c) = 1

(1+w)2
(a−b) = 1

(1+w)2
(a+b+2c) = 1,

which is a contradiction.

Suppose that 1 < w. By the claim in the proof (b) of Theorem 2,

extBLs(2R2
o(w)

) =
{
w2T : T ∈ extBLs(2R2

o(1/w)
)

}
.

By (a) and (b) in the case of 0 < w < 1, (c) and (d) follow. Therefore, we complete
the proof.

4 The extreme points of the unit ball of L(2R2
o(w))

Theorem 4. Let T ((x1, y1), (x2, y2)) = ax1x2+by1y2+cx1y2+dx2y1 = (a, b, c, d) ∈
L(2R2

o(w)). Then the following are equivalent:

(a) T ∈ extBL(2R2
o(w)

);

(b) (−a,−b,−c,−d) ∈ extBL(2R2
o(w)

);

(c) (a, b,−c,−d) ∈ extBL(2R2
o(w)

);

(d) (a,−b, c,−d) ∈ extBL(2R2
o(w)

);

(e) (a,−b,−c, d) ∈ extBL(2R2
o(w)

);

(f) (b, a, c, d) ∈ extBL(2R2
o(w)

);

(g) (d, c, a, b) ∈ extBL(2R2
o(w)

).
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Proof. Notice that

(−a,−b,−c,−d) = T ((x1, y1), (−x2,−y2)),
(a, b,−c,−d) = T ((x1,−y1), (x2,−y2)),
(a,−b, c,−d) = T ((x1,−y1), (x2, y2)),

(a,−b,−c, d) = T ((x1, y1), (x2,−y2)),
(b, a, c, d) = T ((y2, x2), (y1, x1)),

(d, c, a, b) = T ((y2, x2), (x1, y1)),

and that

‖(xj , yj)‖o(w) = ‖(yj , xj)‖o(w) = ‖(xj ,−yj)‖o(w)

for (xj , yj) ∈ R2 and j = 1, 2. We complete the proof.

For T ∈ L(2R2
o(w)), we let

Norm(T )

=
{

((x1, y1), (x2, y2)) ∈ extBR2
o(w)
× extBR2

o(w)
: |T ((x1, y1), (x2, y2))| = ‖T‖

}
.

We call Norm(T ) the norming set of T . By Theorems 2 and 4, it suffices to
consider only T = (a, b, c, d) ∈ L(2R2

o(w)) with a ≥ b ≥ 0 and c ≥ |d| in order to
classify the extreme points of BL(2R2

o(w)
).

Theorem 5. Let 0 < w,w 6= 1 and T ∈ L(2R2
o(w)) be such that T = ax1x2 +

by1y2 + cx1y2 + dx2y1 with a ≥ b ≥ 0 and c ≥ |d|. Then:
(a) Let 0 < w ≤

√
2− 1. Then, T ∈ extBL(2R2

o(w)
) if and only if

T ∈
{

(1, w2, w, w), (w,w, 1, w2), (1, w2 + 2w,w,−w),(
w,w, 1,−(w2 + 2w)

)
,
((1 + w)2

2
,
(1 + w)2

2
,
1− w2

2
,−(

1− w2

2
)
)
,(1− w2

2
,
1− w2

2
,
(1 + w)2

2
,−(1 + w)2

2

)}
.

(b) Let
√

2− 1 < w ≤
√
5−1
2 . Then, T ∈ extBL(2R2

o(w)
) if and only if

T ∈
{

(1, w2, w, w), (w,w, 1, w2), (1, 1, w, w2 + w − 1),

(w,−(w2 + w − 1), 1,−1), (1, 1, w,−w), (w,w, 1,−1)
}
.

(c) Let
√
5−1
2 < w < 1. Then, T ∈ extBL(2R2

o(w)
) if and only if

T ∈
{

(1, w2, w, w), (w,w, 1, w2), (1, 1, w, w2 + w − 1),

(w,w2 + w − 1, 1, 1), (1, 1, w,−w), (w,w, 1,−1)
}
.
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(d) Let 1 < w ≤
√
5+1
2 . Then, T ∈ extBL(2R2

o(w)
) if and only if

T ∈
{

(w2, 1, w, w), (w,w,w2, 1), (w,−w2 + w + 1, w2, w2),

(w2, w2, w,−w2 + w + 1), (w2, w2, w,−w), (w,w,w2,−w2)
}
.

(e) Let
√
5+1
2 < w ≤

√
2 + 1. Then, T ∈ extBL(2R2

o(w)
) if and only if

T ∈
{

(w2, 1, w, w), (w,w,w2, 1), (w,−(−w2 + w + 1), w2,−w2),

(w2, w2, w,−w2 + w + 1), (w2, w2, w,−w), (w,w,w2,−w2)
}
.

(f) Let
√

2 + 1 < w Then, T ∈ extBL(2R2
o(w)

) if and only if

T ∈
{

(w2, 1, w, w), (w,w,w2, 1), (w2, 1 + 2w,w,−w),(
w,w,w2,−(1 + 2w)

)
,
((1 + w)2

2
,
(1 + w)2

2
,
w2 − 1

2
,−(

w2 − 1

2
)
)
,(w2 − 1

2
,
w2 − 1

2
,
(1 + w)2

2
,−(1 + w)2

2

)}
.

Proof. Suppose that 0 < w < 1.

Case 1. c = |d|.

First, suppose that c = d.

Since T ∈ extBL(2R2
o(w)

), we have T ∈ extBLs(2R2
o(w)

). By Theorem 3, we have

T = (1, w2, w, w) (0 < w < 1),(
1, 1,

w2 + 2w − 1

2
,
w2 + 2w − 1

2

)
(
√

2− 1 ≤ w < 1),

(w,−(w2 + w − 1), 1,−1) (
√

2− 1 < w ≤
√

5− 1

2
) or

(w,w2 + w − 1, 1, 1) (

√
5− 1

2
< w < 1).

Claim 1. T = (1, w2, w, w) ∈ extBL(2R2
o(w)

) for 0 < w < 1.

Note that

Norm(T ) =
{(

(1, 0), (1, 0)
)
,
(

(1, 0),
( 1

1 + w
,

1

1 + w

))
,
(( 1

1 + w
,

1

1 + w

)
, (1, 0)

)
,(( 1

1 + w
,

1

1 + w

)
,
( 1

1 + w
,

1

1 + w

))}
.

Let

T± = (1± ε, w2 ± δ, w ± γ,w ± ρ)
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be such that ‖T±‖ = 1 for some ε, δ, γ, ρ ∈ R. Since

|T±((1, 0), (1, 0))| ≤ 1,
∣∣∣T±((1, 0),

( 1

1 + w
,

1

1 + w

))∣∣∣ ≤ 1,∣∣∣T±(( 1

1 + w
,

1

1 + w

)
, (1, 0)

)∣∣∣ ≤ 1,
∣∣∣T±(( 1

1 + w
,

1

1 + w

)
,
( 1

1 + w
,

1

1 + w

))∣∣∣ ≤ 1,

we have 0 = ε = δ = γ = ρ. By Theorem 4, (w,w, 1, w2) ∈ extBL(2R2
o(w)

) for

0 < w < 1.

Claim 2. T =
(

1, 1, w
2+2w−1

2 , w
2+2w−1

2

)
/∈ extBL(2R2

o(w)
) for

√
2− 1 ≤ w < 1.

Let n ∈ N be such that

w2 + 2w − 1

2
+

1

n
< w,

2

n(1 + w)2
< 1.

Let

T± =
(

1, 1,
w2 + 2w − 1

2
± 1

n
,
w2 + 2w − 1

2
∓ 1

n

)
.

By Theorem 2(a), ‖T±‖ = 1, T = 1
2(T+ +T−). Since T 6= T±, T /∈ extBL(2R2

o(w)
).

Claim 3. T = (w,−(w2+w−1), 1,−1) ∈ extBL(2R2
o(w)

) for
√

2−1 < w ≤
√
5+1
2 .

Note that

Norm(T ) =
{

((1, 0), (0, 1)), ((0, 1), (1, 0)),
(

(1, 0),
( 1

1 + w
,

1

1 + w

))
,(( 1

1 + w
,

1

1 + w

)
, (1, 0)

)
,
(( 1

1 + w
,

1

1 + w

)
,
( 1

1 + w
,

1

1 + w

))}
.

Let
T± = (w ± ε,−(w2 + w − 1)± δ, 1± γ,−1± ρ)

be such that ‖T±‖ = 1 for some ε, δ, γ, ρ ∈ R. Since

|T±((1, 0), (0, 1))| ≤ 1, |T±((0, 1), (1, 0))| ≤ 1,∣∣∣T±((1, 0),
( 1

1 + w
,

1

1 + w

))∣∣∣ ≤ 1,
∣∣∣T±(( 1

1 + w
,

1

1 + w

)
,
( 1

1 + w
,

1

1 + w

))∣∣∣ ≤ 1,

we have 0 = ε = δ = γ = ρ.

Claim 4. T = (w,w2 + w − 1, 1, 1) ∈ extBL(2R2
o(w)

) for
√
5+1
2 < w < 1.

Note that

Norm(T ) =
{

((1, 0), (0, 1)), ((0, 1), (1, 0)), ((1, 0),
(( 1

1 + w
,

1

1 + w

))
,(( 1

1 + w
,

1

1 + w

)
, (1, 0)

)
,
(( 1

1 + w
,

1

1 + w

)
,
( 1

1 + w
,

1

1 + w

))}
.

Let
T± = (w ± ε,−(w2 + w − 1)± δ, 1± γ,−1± ρ)



Geometry of bilinear forms on the plane with the octagonal norm 175

be such that ‖T±‖ = 1 for some ε, δ, γ, ρ ∈ R. Since

|T±((1, 0), (0, 1))| ≤ 1, |T±((0, 1), (1, 0))| ≤ 1,∣∣∣T±((1, 0),
( 1

1 + w
,

1

1 + w

))∣∣∣ ≤ 1,
∣∣∣T±(( 1

1 + w
,

1

1 + w

)
,
( 1

1 + w
,

1

1 + w

))∣∣∣ ≤ 1,

we have 0 = ε = δ = γ = ρ.
By Theorem 4, (1, 1, w, w2 + w − 1) ∈ extBL(2R2

o(w)
) for

√
2− 1 < w < 1.

Suppose that c = −d.
By Theorem 4, S = (a,−b, c, c) ∈ extBL(2R2

o(w)
). Hence, S ∈ extBLs(2R2

o(w)
).

By Theorem 3, we have

S =
((1 + w)2

2
,−(1 + w)2

2
,
1− w2

2
,
1− w2

2

)
(0 < w ≤

√
2− 1),

(1,−(w2 + 2w), w, w) (0 < w ≤
√

2− 1
)
, (1,−1, w, w) (

√
2− 1 ≤ w < 1).

Claim 5. S =
(
(1+w)2

2 ,− (1+w)2

2 , 1−w
2

2 , 1−w
2

2

)
∈ extBL(2R2

o(w)
) for 0 < w ≤

√
2− 1.

Notice that

Norm(S) =
{(

(1, 0),
( 1

1 + w
,

1

1 + w

))
,
(( 1

1 + w
,

1

1 + w

)
, (1, 0)

)
,(

(0, 1),
( 1

1 + w
,− 1

1 + w

))
,
(( 1

1 + w
,− 1

1 + w

)
, (0, 1)

)
,(( 1

1 + w
,

1

1 + w

)
,
( 1

1 + w
,− 1

1 + w

))
,(( 1

1 + w
,− 1

1 + w

)
,
( 1

1 + w
,

1

1 + w

))}
.

Let

S± =
((1 + w)2

2
± ε,−(1 + w)2

2
± δ, 1− w2

2
± γ, 1− w2

2
± ρ
)

be such that ‖S±‖ = 1 for some ε, δ, γ, ρ ∈ R. Since∣∣∣S±((1, 0),
( 1

1 + w
,

1

1 + w

))∣∣∣ ≤ 1,
∣∣∣S±(( 1

1 + w
,

1

1 + w

)
, (1, 0)

)∣∣∣ ≤ 1,∣∣∣S±((0, 1),
( 1

1 + w
,− 1

1 + w

))∣∣∣ ≤ 1,
∣∣∣S±(( 1

1 + w
,− 1

1 + w

)
, (0, 1)

)∣∣∣ ≤ 1,

we have 0 = ε = δ = γ = ρ.

Claim 6. S = (1,−(w2 + 2w), w, w) ∈ extBL(2R2
o(w)

) for 0 < w ≤
√

2− 1.

Note that

Norm(S) =
{

((1, 0), (1, 0)),
(

(1, 0),
( 1

1 + w
,

1

1 + w

))
,(( 1

1 + w
,− 1

1 + w

)
, (1, 0)

)
,
(( 1

1 + w
,

1

1 + w

)
,
( 1

1 + w
,

1

1 + w

))}
.
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Let

S± = (1± ε, w2 + 2w ± δ, w ± γ,−w ± ρ)

be such that ‖S±‖ = 1 for some ε, δ, γ, ρ ∈ R. Since

|S±((1, 0), (1, 0))| ≤ 1,
∣∣∣S±((1, 0),

( 1

1 + w
,

1

1 + w

))∣∣∣ ≤ 1,∣∣∣S±(( 1

1 + w
,− 1

1 + w

)
, (1, 0)

)∣∣∣≤1,
∣∣∣S±(( 1

1 + w
,

1

1 + w

)
,
( 1

1 + w
,

1

1 + w

))∣∣∣≤1,

we have 0 = ε = δ = γ = ρ.
By Theorem 4, (w,w, 1,−(w2 + 2w)) ∈ extBL(2R2

o(w)
) for 0 < w ≤

√
2− 1.

Claim 7. S = (1,−1, w, w) ∈ extBL(2R2
o(w)

) for
√

2− 1 ≤ w < 1.

Note that

Norm(S) =
{

((1, 0), (1, 0)), ((0, 1), (0, 1)),
(

(1, 0),
( 1

1 + w
,

1

1 + w

))
,(( 1

1 + w
,

1

1 + w

)
, (1, 0)),

(
(0, 1),

( 1

1 + w
,− 1

1 + w

))
(( 1

1 + w
,− 1

1 + w

)
, (0, 1)

)}
.

Let

S± = (1± ε,−1± δ, w ± γ,w ± ρ)

be such that ‖S±‖ = 1 for some ε, δ, γ, ρ ∈ R. Since

|S±((1, 0), (1, 0))| ≤ 1, |S±((0, 1), (0, 1))| ≤ 1,∣∣∣S±((1, 0),
( 1

1 + w
,

1

1 + w

))∣∣∣ ≤ 1,
∣∣∣S±(( 1

1 + w
,

1

1 + w

)
, (1, 0)

)∣∣∣ ≤ 1,

we have 0 = ε = δ = γ = ρ.
By Theorem 4, (1, 1, w,−w), (w,w, 1,−1) ∈ extBL(2R2

o(w)
) for

√
2−1 ≤ w < 1.

Case 2. c > |d|.

Suppose that a = 1.
Note that

‖T‖ = 1 = max
{
a, b, c,

1

(1 + w)
(a+ c),

1

(1 + w)
(b+ c),

1

(1 + w)2
(a− b+ c− d),

1

(1 + w)2
(a+ b+ c+ d)

}
.

Hence, c ≤ w. We claim that if a = 1, c < w, then T is not extreme. Without
a loss of generality we may assume that b = 1. Then, 1

(1+w)2
(a − b + c − d) < 1.

Hence,

‖T‖ = 1 = max
{
a, b,

1

(1 + w)2
(a+ b+ c+ d)

}
.
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Note that Norm(T ) has at most 3 elements. Hence, T is not extreme, which is a
contradiction. Hence, a = b = 1, c = w, 1 = 1

(1+w)2
(a+ b+ c+ d). Therefore, T =

(1, 1, w, w2+w−1) for
√

2−1 < w < 1. Since (w,w2+w−1, 1, 1) ∈ extBL(2R2
o(w)

)

for
√

2− 1 < w < 1, by Theorem 4, T ∈ extBL(2R2
o(w)

) for
√

2− 1 < w < 1.

Suppose that a < 1.
Note that if c = 1, then a = w. Indeed, if a < w, then

‖T‖ = 1 = max
{
c,

1

(1 + w)2
(a− b+ c− d),

1

(1 + w)2
(a+ b+ c+ d)

}
,

which shows that T is not extreme because Norm(T ) has at most 3 elements.
Hence, a = w, c = 1. If 0 ≤ b < w, then 1

(1+w)2
(a− b+ c− d) < 1. Hence,

‖T‖ = 1 = max
{
c,

1

(1 + w)
(a+ c),

1

(1 + w)2
(a+ b+ c+ d)

}
,

which shows that T is not extreme because Norm(T ) has at most 3 elements.
Therefore, a = b = w, c = 1 and T = (w,w, 1, w2) for 0 < w < 1. Since
(1, w2, w, w) ∈ extBL(2R2

o(w)
) for 0 < w < 1, by Theorem 4, T ∈ extBL(2R2

o(w)
) for

0 < w < 1.
Suppose that 1 < w.
By the claim in the proof (b) of Theorem 2,

extBL(2R2
o(w)

) =
{
w2T : T ∈ extBL(2R2

o(1/w)
)

}
.

By (a), (b) and (c) in the case of 0 < w < 1, (d), (e) and (f) follow. Therefore,
we complete the proof.

Notice that (extBL(2R2
o(w)

)∩Ls(2R2
o(w))) ⊆ extBLs(2R2

o(w)
) for all 0 < w,w 6= 1.

Theorem 6. (a) If w ∈ [
√

2− 1,
√

2 + 1]\{1}, then

extBLs(2R2
o(w)

)\(extBL(2R2
o(w)

) ∩ Ls(
2R2

o(w)))

=
{
±
(

1, 1,±w
2 + 2w − 1

2
,±w

2 + 2w − 1

2

)
,

±
(w2 + 2w − 1

2
,
w2 + 2w − 1

2
,±1,±1

)}
.

(b) If w ∈ (0,∞)\[
√

2− 1,
√

2 + 1], then

extBLs(2R2
o(w)

)\(extBL(2R2
o(w)

) ∩ Ls(
2R2

o(w))) = ∅.

Proof. It follows from Claim 2 in the proof of Theorem 5.

Kim [38] showed that for n,m ≥ 2, extBLs(nl2∞) = extBL(nl2∞) ∩ Ls(
nl2∞) and

extBLs(2l
m+1
∞ ) 6= extBL(2lm+1

∞ ) ∩ Ls(
2lm+1
∞ ).
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Corollary 1. (a) If w ∈ [
√

2− 1,
√

2 + 1]\{1}, then

extBLs(2R2
o(w)

) 6= extBL(2R2
o(w)

) ∩ Ls(
2R2

o(w));

(b) If w ∈ (0,∞)\[
√

2− 1,
√

2 + 1], then

extBLs(2R2
o(w)

) = extBL(2R2
o(w)

) ∩ Ls(
2R2

o(w)).

5 The exposed points of the unit balls of L(2R2
o(w)) and

Ls(
2R2

o(w))

Lemma 1. Let f ∈ L(2R2
o(w))

∗ for some w > 1. Then, ‖f‖ = w2‖f‖L(2R2

o( 1
w )

).

Proof. It follows that

‖f‖ = sup
T∈extB

L(2R2
o(w)

)

|f(T )| = sup
R∈extB

L(2R2
o(1/w)

)

|f(w2R)|

= w2 sup
R∈extB

L(2R2
o(1/w)

)

|f(R)| = w2‖f‖L(2R2
o(1/w)

).

Theorem 7. Let f ∈ L(2R2
o(w))

∗ be such that α = f(x1x2), β = f(y1y2), γ =

f(x1y2), δ = f(x2y1).

(a) Let w ≤
√

2− 1. Then,

‖f‖ = max
{
|α± w2β|+ w|γ ± δ|, |w2α± β|+ w|γ ± δ|,

w|α± β|+ |γ ± w2δ|, w|α± β|+ |w2γ ± δ|,
|α± (w2 + 2w)β|+ w|γ ∓ δ|, |β ± (w2 + 2w)α|+ w|γ ∓ δ|,
w|α± β|+ |γ ∓ (w2 + 2w)δ|, w|α± β|+ |δ ∓ (w2 + 2w)γ|,
(1 + w)2

2
|α± β|+ 1− w2

2
|γ ∓ δ|, 1− w2

2
|α± β|+ (1 + w)2

2
|γ ∓ δ|

}
.

(b) Let
√

2− 1 < w < 1. Then,

‖f‖ = max
{
|α± w2β|+ w|γ ± δ|, |w2α± β|+ w|γ ± δ|,

w|α± β|+ |γ ± w2δ|, w|α± β|+ |w2γ ± δ|,
|α± β|+ |wγ ± (w2 + w − 1)δ|, |β ± α|+ |wδ ± (w2 + w − 1)γ|,
|wα± (w2 + w − 1)β|+ |γ ± δ|, |wβ ± (w2 + w − 1)α|+ |γ ± δ|,

|α± β|+ w|γ ∓ δ|, w|α± β|+ |γ ∓ δ|
}
.
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(c) Let 1 < w <
√

2 + 1. Then,

‖f‖ = max
{
|α± w2β|+ w|γ ± δ|, |w2α± β|+ w|γ ± δ|,

w|α± β|+ |γ ± w2δ|, w|α± β|+ |w2γ ± δ|,
|wα± (−w2 + w + 1)β|+ w2|γ ± δ|, |wβ ± (−w2 + w + 1)α|+ w2|γ ± δ|,
w2|α± β|+ |wγ ± (−w2 + w + 1)δ|, w2|α± β|+ |wδ ± (−w2 + w + 1)γ|,

w2|α± β|+ w|γ ∓ δ|, w|α± β|+ w2|γ ∓ δ|
}
.

(d) Let
√

2 + 1 ≤ w. Then,

‖f‖ = max
{
|α± w2β|+ w|γ ± δ|, |w2α± β|+ w|γ ± δ|,

w|α± β|+ |γ ± w2δ|, w|α± β|+ |w2γ ± δ|,
|w2α± (1 + 2w)β|+ w|γ ∓ δ|, |w2β ± (1 + 2w)α|+ w|γ ∓ δ|,
w|α± β|+ |w2γ ∓ (1 + 2w)δ|, w|α± β|+ |w2δ ∓ (1 + 2w)γ|,
(1 + w)2

2
|α± β|+ w2 − 1

2
|γ ∓ δ|, w

2 − 1

2
|α± β|+ (1 + w)2

2
|γ ∓ δ|

}
.

Proof. (a) and (b). It follows from Theorems 4, 5 and the fact that

‖f‖ = sup
T∈extB

L(2R2
o(w)

)

|f(T )|.

(c) and (d). It follows from Lemma 1, (a) and (b).

Theorem 8. Let T = (a, b, c, d) ∈ L(2R2
o(w)). Then the following are equivalent:

(a) T ∈ expBL(2R2
o(w)

);

(b) (−a,−b,−c,−d) ∈ expBL(2R2
o(w)

);

(c) (a, b,−c,−d) ∈ expBL(2R2
o(w)

);

(d) (a,−b, c,−d) ∈ expBL(2R2
o(w)

);

(e) (a,−b,−c, d) ∈ expBL(2R2
o(w)

);

(f) (b, a, c, d) ∈ expBL(2R2
o(w)

);

(g) (d, c, a, b) ∈ expBL(2R2
o(w)

).

Proof. It follows from the arguments in the proof of Theorem 4.

Theorem 9. ([22]) Let E be a real Banach space such that extBE is finite. Sup-
pose that x ∈ extBE satisfies that there exists an f ∈ E∗ with f(x) = 1 = ‖f‖
and |f(y)| < 1 for every y ∈ extBE\{±x}. Then x ∈ expBE.

Theorem 10. The equality expBL(2R2
o(w)

) = extBL(2R2
o(w)

) holds.
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Proof. First, suppose that 0 < w < 1.

Claim 1. T = (1, w2, w, w) ∈ expBL(2R2
o(w)

) for 0 < w < 1.

Let f ∈ L(2R2
o(w))

∗ be such that α = 1 − w2+4w
3n , β = 1

3n , γ = δ = 2
3n , where

n ∈ N is big such that ‖f‖ = 1. By Theorem 7, 1 = ‖f‖ = f(T ) and |f(S)| < 1
for every S ∈ extBL(2R2

o(w)
)\{±T}. By Theorem 9, T ∈ expBL(2R2

o(w)
). Hence, by

Theorem 8, (w,w, 1, w2) ∈ expBL(2R2
o(w)

) for 0 < w < 1.

Claim 2. T = (1, w2 + 2w,w,−w) ∈ expBLs(2R2
o(w)

) for w ≤
√

2− 1.

Let f ∈ L(2R2
o(w))

∗ be such that α = 1 − w2+4w
2n , β = 1

2n , γ = −δ = 1
n , where

n ∈ N is big such that ‖f‖ = 1. By Theorem 7, 1 = ‖f‖ = f(T ) and |f(S)| < 1
for every S ∈ extBL(2R2

o(w)
)\{±T}. By Theorem 9, T ∈ expBL(2R2

o(w)
). Hence, by

Theorem 8, (w,−w, 1, w2 + 2w) ∈ expBLs(2R2
o(w)

) for w ≤
√

2− 1

Claim 3. T = (1, 1, w, w2 + w − 1) ∈ expBL(2R2
o(w)

) for
√

2− 1 < w < 1.

Let f ∈ L(2R2
o(w))

∗ be such that α = β = 1
2(1 − 1

n), γ = 2
n(w2+3w−1) , δ =

1
n(w2+3w−1) , where n ∈ N is big such that ‖f‖ = 1. By Theorem 7, 1 = ‖f‖ =

f(T ) and |f(S)| < 1 for every S ∈ extBL(2R2
o(w)

)\{±T}. By Theorem 9, T ∈
expBL(2R2

o(w)
). Hence, by Theorem 8, T = (w,w2 + w − 1, 1, 1) ∈ expBL(2R2

o(w)
)

for
√

2− 1 < w < 1.

Claim 4. T =
(
(1+w)2

2 , (1+w)
2

2 , 1−w
2

2 ,− (1−w2)
2

)
∈ expBL(2R2

o(w)
) for 0 < w ≤

√
2− 1.

Let f ∈ L(2R2
o(w))

∗ be such that α = β = 1
(1+w)2

(1 − 1
n), γ = 1

n(1−w2)
= −δ,

where n ∈ N is big such that ‖f‖ = 1. By Theorem 7, 1 = ‖f‖ = f(T ) and
|f(S)| < 1 for every S ∈ extBL(2R2

o(w)
)\{±T}. By Theorem 9, T ∈ expBL(2R2

o(w)
).

Hence, by Theorem 8, (1−w
2

2 , 1−w
2

2 , (1+w)
2

2 ,− (1+w)2

2 ) ∈ expBL(2R2
o(w)

) for 0 < w ≤
√

2− 1.

Claim 5. T = (1, 1, w, w) ∈ expBL(2R2
o(w)

) for
√

2− 1 ≤ w < 1.

Let f ∈ L(2R2
o(w))

∗ be such that α = 1 − 2
n , β = 1

n , γ = 1
2nw = −δ, where

n ∈ N is big such that ‖f‖ = 1. By Theorem 7, 1 = ‖f‖ = f(T ) and |f(S)| < 1
for every S ∈ extBL(2R2

o(w)
)\{±T}. By Theorem 9, T ∈ expBL(2R2

o(w)
). Hence, by

Theorem 8, T = (w,w, 1,−1) ∈ extBL(2R2
o(w)

) for
√

2−1 ≤ w < 1. We have shown

that if 0 < w < 1, then expBL(2R2
o(w)

) = extBL(2R2
o(w)

).

Suppose that 1 < w.
It follows that

expBL(2R2
o(w)

) =
{
w2T : T ∈ expBL(2R2

o(1/w)
)

}
=
{
w2T : T ∈ extBL(2R2

o(1/w)
)

}
= extBL(2R2

o(w)
).
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Therefore, we complete the proof.

Theorem 11. The following equalities hold:

(a) expBLs(2R2
o(w)

) = extBLs(2R2
o(w)

);

(b) expBLs(2R2
o(w)

)\(expBL(2R2
o(w)

) ∩ Ls(
2R2

o(w)))

= extBLs(2R2
o(w)

)\(extBL(2R2
o(w)

) ∩ Ls(
2R2

o(w))).

Proof. (a). Notice that (expBL(2R2
o(w)

) ∩ Ls(
2R2

o(w))) ⊆ expBLs(2R2
o(w)

) for all

0 < w,w 6= 1. By Theorems 4 and 10, it suffices to show that

T =
(

1, 1,
w2 + 2w − 1

2
,
w2 + 2w − 1

2

)
∈ expBLs(2R2

o(w)
)

for
√

2− 1 < w < 1.

Let f ∈ L(2R2
o(w))

∗ be such that α = 1 − (1+w)2

2n , β = 1
n , γ = δ = 1

2n , where

n ∈ N is big such that ‖f‖ = 1. By Theorem 7, 1 = ‖f‖ = f(T ) and |f(S)| < 1
for every S ∈ extBL(2R2

o(w)
)\{±T}. By Theorem 9, T ∈ expBL(2R2

o(w)
). Hence,

T ∈ expBLs(2R2
o(w)

).

(b) follows from (a) and Theorem 10.

6 The smooth points of the unit balls of L(2R2
o(w)) and

Ls(
2R2

o(w))

Theorem 12. Let 0 < w < 1 and T = (a, b, c, d) ∈ L(2R2
o(w)) be such that

‖T‖ = 1. Then, T ∈ smBL(2R2
o(w)

) if and only if there are i1, j1 ∈ {1, 2, 3, 4} such

that

|T (Xi1 , Xj1)| = 1 and |T (Xi, Xj)| < 1

for every i, j ∈ {1, 2, 3, 4} with (i, j) 6= (i1, j1), where X1 = (1, 0), X2 = (0, 1), X3 =
((1 + w)−1, (1 + w)−1), X4 = ((1 + w)−1,−(1 + w)−1).

Proof. (⇒). Assume the assertion is not true.

Suppose that |T (X1, X2)| = 1, |T (X3, x4)| = 1. Let f1 = sign(T (X1, X2))δX1,X2

and f2 = sign(T (X3, X4))δX3,X4 be elements of L(2R2
o(w))

∗, where δX1,X2(S) =

S(X1, X2) for S ∈ L(2R2
o(w)). Notice that

f1 6= f2, ‖fj‖ = 1 = fj(T ) for j = 1, 2.

Hence, T is not a smooth point. This is a contradiction. Similarly, we conclude
that the other cases reach a contradiction. Therefore, the assertion is true.

(⇐). Let f ∈ L(2R2
o(w))

∗ be such that f(T ) = 1 = ‖f‖. Let α = f(x1y1), β =

f(x2y2), γ = f(x1y2), ρ = f(x2y1).
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Case 1. |T (X1, X1)| = 1 and |T (Xi, Xj)| < 1 for every i, j ∈ {1, 2, 3, 4} with
(i, j) 6= (1, 1).

Without loss of generality, we may assume that a = T (X1, X1) = 1. By
Theorem 2, there is N ∈ N such that

1 =
∥∥∥T ± (0,

1

N
, 0, 0

)∥∥∥ =
∥∥∥T ± (0, 0,

1

N
, 0
)∥∥∥ =

∥∥∥T ± (0, 0, 0,
1

N

)∥∥∥.
We claim that α = 1, β = γ = ρ = 0. It follows that

1 ≥ max
{∣∣∣f(T ± (0,

1

N
, 0, 0

))∣∣∣, ∣∣∣f(T ± (0, 0,
1

N
, 0
))∣∣∣, ∣∣∣f(T ± (0, 0, 0,

1

N

))∣∣∣}
= max

{
1 +

∣∣∣f((0,
1

N
, 0, 0

))∣∣∣, 1 +
∣∣∣f((0, 0,

1

N
, 0
))∣∣∣, 1 +

∣∣∣f((0, 0, 0,
1

N

))∣∣∣},
which shows that

0 = f
((

0,
1

N
, 0, 0

))
= f

((
0, 0,

1

N
, 0
))

= f
((

0, 0, 0,
1

N

))
.

Hence, β = γ = ρ = 0. Since

a = 1 = f(T ) = aα+ bβ + cγ + dρ = aα,

α = 1. Hence, f is unique. Hence, T ∈ smBL(2R2
o(w)

).

Case 2. |T (X1, X3)| = 1 and |T (Xi, Xj)| < 1 for every i, j ∈ {1, 2, 3, 4} with
(i, j) 6= (1, 3).

Without loss of generality, we may assume that 1
1+w (a+ c) = T (X1, X3) = 1.

By Theorem 2, there is N ∈ N such that

1 =
∥∥∥T ± ( 1

N
, 0,− 1

N
, 0
)∥∥∥ =

∥∥∥T ± (0,
1

N
, 0,

1

N

)∥∥∥ =
∥∥∥T ± (0,

1

N
, 0,− 1

N

)∥∥∥.
We claim that α = γ = 1

1+w , β = ρ = 0. It follows that

1 ≥ max
{∣∣∣f(T ± ( 1

N
, 0,− 1

N
, 0
))∣∣∣, ∣∣∣f(T ± (0,

1

N
, 0,

1

N

))∣∣∣,∣∣∣f(T ± (0,
1

N
, 0,− 1

N

))∣∣∣}
= max

{
1 +

∣∣∣f(( 1

N
, 0,− 1

N
, 0
))∣∣∣, 1 +

∣∣∣f((0,
1

N
, 0,

1

N

))∣∣∣,
1 +

∣∣∣f((0,
1

N
, 0,− 1

N

))∣∣∣},
which shows that

0 = f
(( 1

N
, 0,− 1

N
, 0
))

= f
((

0,
1

N
, 0,

1

N

))
= f

((
0,

1

N
, 0,− 1

N

))
.

Hence, α = γ, β = ρ = 0. Since

1

1 + w
(a+ c) = 1 = f(T ) = α(a+ c),
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α = γ = 1
1+w . Hence, f is unique. Hence, T ∈ smBL(2R2

o(w)
).

Case 3. |T (X3, X3)| = 1 and |T (Xi, Xj)| < 1 for every i, j ∈ {1, 2, 3, 4} with
(i, j) 6= (3, 3).

Without loss of generality, we may assume that 1
(1+w)2

(a + b + c + d) =

T (X3, X3) = 1. By Theorem 2, there is N ∈ N such that

1=
∥∥∥T±( 1

N
,− 1

N
,

1

N
,− 1

N

)∥∥∥=
∥∥∥T±( 1

N
,

1

N
,− 1

N
,− 1

N

)∥∥∥=
∥∥∥T±( 1

N
, 0,− 1

N
, 0
)∥∥∥.

We claim that α = γ = β = ρ = 1
(1+w)2

. It follows that

1 ≥ max
{∣∣∣f(T ± ( 1

N
,− 1

N
,

1

N
,− 1

N

))∣∣∣, ∣∣∣f(T ± ( 1

N
,

1

N
,− 1

N
,− 1

N

))∣∣∣,∣∣∣f(T ± ( 1

N
, 0,− 1

N
, 0
))∣∣∣}

= max
{

1 +
∣∣∣f(( 1

N
,− 1

N
,

1

N
,− 1

N

))∣∣∣, 1 +
∣∣∣f(( 1

N
,

1

N
,− 1

N
,− 1

N

))∣∣∣,
1 +

∣∣∣f(( 1

N
, 0,− 1

N
, 0
))∣∣∣},

which shows that

0 = f
(( 1

N
,− 1

N
,

1

N
,− 1

N

))
= f

(( 1

N
,

1

N
,− 1

N
,− 1

N

))
= f

(( 1

N
, 0,− 1

N
, 0
))
.

Hence, α = γ = β = ρ. Since

1

(1 + w)2
(a+ b+ c+ d) = 1 = f(T ) = α(a+ b+ c+ d),

α = γ = β = ρ = 1
(1+w)2

. Hence, f is unique. Hence, T ∈ smBL(2R2
o(w)

).

By analogous arguments in cases 1-3, in the other cases we may conclude that
T ∈ smBL(2R2

o(w)
). We omit the proofs. Therefore, we complete the proof.

Theorem 13. Let w > 1 and T = (a, b, c, d) ∈ L(2R2
o(w)) be such that ‖T‖ = 1.

Then, T ∈ smBL(2R2
o(w)

) if and only if there are i1, j1 ∈ {1, 2, 3, 4} such that

|T (Yi1 , Yj1)| = 1 and |T (Yi, Yj)| < 1

for every i, j ∈ {1, 2, 3, 4} with (i, j) 6= (i1, j1), where Y1 = (w−1, 0), Y2 = (0, w−1),
Y3 = ((1 + w)−1, (1 + w)−1), Y4 = ((1 + w)−1,−(1 + w)−1).

Proof. It follows from analogous arguments in the proof of Theorem 12.

Theorem 14. Let 0 < w < 1 and T = (a, b, c, c) ∈ Ls(
2R2

o(w)) be such that

‖T‖ = 1. Then, T ∈ smBLs(2R2
o(w)

) if and only if there are i1, j1 ∈ {1, 2, 3, 4} such

that
|T (Xi1 , Xj1)| = |T (Xj1 , Xi1)| = 1 and |T (Xi, Xj)| < 1

for every i, j ∈ {1, 2, 3, 4} with (i, j) 6= (i1, j1), (j1, i1).
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Proof. We follow analogous arguments in the proof of Theorem 12.

(⇒) follows by the same argument in the proof (⇒) of Theorem 12.

(⇐). Let g ∈ Ls(
2R2

o(w))
∗ be such that g(T ) = 1 = ‖g‖ and α = g(x1x2), β =

g(y1y2), γ = g(x1y2 + x2y1).

Case 1. |T (X1, X1)| = 1 and |T (Xi, Xj)| < 1 for every i, j ∈ {1, 2, 3, 4} with
(i, j) 6= (1, 1).

Without loss of generality, we may assume that a = T (X1, X1) = 1. By
Theorem 2, there is N ∈ N such that

1 =
∥∥∥T ± (0,

1

N
, 0, 0

)∥∥∥ =
∥∥∥T ± (0, 0,

1

N
,

1

N

)∥∥∥.
We claim that α = 1, β = γ = 0. It follows that

1 ≥ max
{∣∣∣g(T ± (0,

1

N
, 0, 0

))∣∣∣, ∣∣∣g(T ± (0, 0,
1

N
,

1

N

))∣∣∣}
= max

{
1 +

∣∣∣g((0,
1

N
, 0, 0

))∣∣∣, 1 +
∣∣∣g((0, 0,

1

N
,

1

N

))∣∣∣},
which shows that

0 = g
((

0,
1

N
, 0, 0

))
= g
((

0, 0,
1

N
,

1

N

))
.

Hence, β = γ = 0. Since

a = 1 = g(T ) = aα+ bβ + cγ = aα,

α = 1. Hence, g is unique. Hence, T ∈ smBLs(2R2
o(w)

).

Case 2. |T (X1, X3)| = 1 and |T (Xi, Xj)| < 1 for every i, j ∈ {1, 2, 3, 4} with
(i, j) 6= (1, 3).

Without loss of generality, we may assume that 1
1+w (a+ c) = T (X1, X3) = 1.

By Theorem 2, there is N ∈ N such that

1 =
∥∥∥T ± (− 1

N
,

1

N
,

1

N
,

1

N

)∥∥∥ =
∥∥∥T ± (0,

1

N
, 0, 0

)∥∥∥.
We claim that α = γ = 1

1+w , β = 0. It follows that

1 ≥ max
{∣∣∣g(T ± (− 1

N
,

1

N
,

1

N
,

1

N

))∣∣∣, ∣∣∣g(T ± (0,
1

N
, 0, 0

))∣∣∣}
= max

{
1 +

∣∣∣g((− 1

N
,

1

N
,

1

N
,

1

N

))∣∣∣, 1 +
∣∣∣g((0,

1

N
, 0, 0

))∣∣∣},
which shows that

0 = g
((
− 1

N
,

1

N
,

1

N
,

1

N

))
= g
((

0,
1

N
, 0, 0

))
.
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Hence, α = γ, β = 0. Since

1

1 + w
(a+ c) = 1 = g(T ) = α(a+ c),

α = γ = 1
1+w . Hence, g is unique. Hence, T ∈ smBL(2R2

o(w)
).

Case 3. |T (X3, X3)| = 1 and |T (Xi, Xj)| < 1 for every i, j ∈ {1, 2, 3, 4} with
(i, j) 6= (3, 3).

Without loss of generality, we may assume that 1
(1+w)2

(a+b+2c) = T (X3, X3) =

1. By Theorem 2, there is N ∈ N such that

1 =
∥∥∥T ± ( 2

N
, 0,− 1

N
,− 1

N

)∥∥∥ =
∥∥∥T ± (− 1

N
,

1

N
, 0, 0

)∥∥∥.
We claim that α = β = γ

2 = 1
(1+w)2

. It follows that

1 ≥ max
{∣∣∣g(T ± ( 2

N
, 0,− 1

N
,− 1

N

))∣∣∣, ∣∣∣g(T ± (− 1

N
,

1

N
, 0, 0

))∣∣∣}
= max

{
1 +

∣∣∣g(( 2

N
, 0,− 1

N
,− 1

N

))∣∣∣, 1 +
∣∣∣g((− 1

N
,

1

N
, 0, 0

))∣∣∣},
which shows that

0 = g
(( 2

N
, 0,− 1

N
,− 1

N

))
= g
((
− 1

N
,

1

N
, 0, 0

))
.

Hence, α = β = γ
2 . Since

1

(1 + w)2
(a+ b+ 2c) = 1 = g(T ) = α(a+ b+ 2c),

α = β = γ
2 = 1

(1+w)2
. Hence, g is unique. Hence, T ∈ smBLs(2R2

o(w)
).

By analogous arguments in cases 1-3, in the other cases we may conclude that
T ∈ smBLs(2R2

o(w)
). We omit the proofs. Therefore, we complete the proof.

Theorem 15. Let w > 1 and T = (a, b, c, c) ∈ Ls(
2R2

o(w)) be such that ‖T‖ = 1.

Then, T ∈ smBLs(2R2
o(w)

) if and only if there are i1, j1 ∈ {1, 2, 3, 4} such that

|T (Yi1 , Yj1)| = |T (Yj1 , Yi1)| = 1 and |T (Yi, Yj)| < 1

for every i, j ∈ {1, 2, 3, 4} with (i, j) 6= (i1, j1), (j1, i1).

Proof. It follows from analogous arguments in the proof of Theorem 14.

Theorem 16. Let 0 < w,w 6= 1.Then,smBL(2R2
o(w)

)

⋂
Ls(

2R2
o(w))(smBLs(2R2

o(w)
).

Proof. By Theorems 12–14, smBL(2R2
o(w)

)

⋂
Ls(

2R2
o(w)) is a subset of smBLs(2R2

o(w)
).

Let 0 < w < 1. Let T0 ∈ smBLs(2R2
o(w)

) be such that

|T0(X1, X2)| = 1 and |T0(Xi, Xj)| < 1

for every i, j ∈ {1, 2, 3, 4} with (i, j) 6= (1, 2). Since |T0(X2, X1)| = 1, by Theorem
4.1, T0 /∈ smBL(2R2

o(w)
)

⋂
Ls(

2R2
o(w)). If w > 1, we may choose T1 ∈ smBLs(2R2

o(w)
)

such that T1 /∈ smBL(2R2
o(w)

)

⋂
Ls(

2R2
o(w)). We complete the proof.
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A., Supremum norms for 2-homogeneous polynomials on circle sectors, J.
Convex Anal. 21 (2014), no. 3, 745–764.
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