GEOMETRY OF BILINEAR FORMS ON THE PLANE WITH THE OCTAGONAL NORM

Sung Guen KIM ${ }^{1}$

Abstract

Let $\mathbb{R}_{o(w)}^{2}$ be the plane with the octagonal norm with weight $0<w, w \neq 1$ $$
\|(x, y)\|_{o(w)}=\max \{|x|+w|y|,|y|+w|x|\} .
$$

In this paper we classify all extreme, exposed and smooth points of the closed unit balls of $\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ and $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$, where $\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ is the space of bilinear forms on $\mathbb{R}_{o(w)}^{2}$, and $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ is the subspace of $\mathcal{L}\left({ }^{2} l_{\infty, \theta}^{2}\right)$ consisting of symmetric bilinear forms.

2000 Mathematics Subject Classification: 46A22
Key words: extreme points, exposed points, smooth points

1 Introduction

Throughout the paper, we let $n, m \in \mathbb{N}, n, m \geq 2$. We write B_{E} for the closed unit ball of a real Banach space E and the dual space of E is denoted by E^{*}. An element $x \in B_{E}$ is called an extreme point of B_{E} if $y, z \in B_{E}$ with $x=\frac{1}{2}(y+z)$ implies $x=y=z$. An element $x \in B_{E}$ is called an exposed point of B_{E} if there is $f \in E^{*}$ so that $f(x)=1=\|f\|$ and $f(y)<1$ for every $y \in B_{E} \backslash\{x\}$. It is easy to see that every exposed point of B_{E} is an extreme point. An element $x \in B_{E}$ is called a smooth point of B_{E} if there is unique $f \in E^{*}$ so that $f(x)=1=\|f\|$. We denote by $\operatorname{ext} B_{E}, \exp B_{E}$ and $\operatorname{sm} B_{E}$ the set of extreme points, the set of exposed points and the set of smooth points of B_{E}, respectively. A mapping $P: E \rightarrow \mathbb{R}$ is a continuous n-homogeneous polynomial if there exists a continuous n-linear form T on the product $E \times \cdots \times E$ such that $P(x)=T(x, \cdots, x)$ for every $x \in E$. We denote by $\mathcal{P}\left({ }^{n} E\right)$ the Banach space of all continuous n-homogeneous polynomials from E into \mathbb{R} endowed with the norm $\|P\|=\sup _{\|x\|=1}|P(x)|$. We denote by

[^0]$\mathcal{L}\left({ }^{n} E\right)$ the Banach space of all continuous n-linear forms on E endowed with the norm $\|T\|=\sup _{\left\|x_{k}\right\|=1}\left|T\left(x_{1}, \cdots, x_{n}\right)\right| \cdot \mathcal{L}_{s}\left({ }^{n} E\right)$ denote the closed subspace of all continuous symmetric n-linear forms on E. Notice that $\mathcal{L}\left({ }^{n} E\right)$ is identified with the dual of n-fold projective tensor product $\hat{\bigotimes}_{\pi, n} E$. With this identification, the action of a continuous n-linear form T as a bounded linear functional on $\hat{\bigotimes}_{\pi, n} E$ is given by
$$
\left\langle\sum_{i=1}^{k} x^{(1), i} \otimes \cdots \otimes x^{(n), i}, T\right\rangle=\sum_{i=1}^{k} T\left(x^{(1), i}, \cdots, x^{(n), i}\right) .
$$

Notice also that $\mathcal{L}_{s}\left({ }^{n} E\right)$ is identified with the dual of n-fold symmetric projective tensor product $\hat{\bigotimes}_{s, \pi, n} E$. With this identification, the action of a continuous symmetric n-linear form T as a bounded linear functional on $\hat{\otimes}_{s, \pi, n} E$ is given by

$$
\left\langle\sum_{i=1}^{k} \frac{1}{n!}\left(\sum_{\sigma} x^{\sigma(1), i} \otimes \cdots \otimes x^{\sigma(n), i}\right), T\right\rangle=\sum_{i=1}^{k} T\left(x^{(1), i}, \cdots, x^{(n), i}\right),
$$

where σ goes over all permutations on $\{1, \ldots, n\}$. For more details about the theory of polynomials and multilinear mappings on Banach spaces, we refer to [8].

Let us sketch the history of classification problems of the extreme points and the exposed points of the unit ball of continuous n-homogeneous polynomials on a Banach space.

We let $l_{p}^{n}=\mathbb{R}^{n}$ for every $1 \leq p \leq \infty$ equipped with the l_{p}-norm. Choi et al. ([3]-[5]) initiated and classified ext $B_{\mathcal{P}\left(l_{p}^{2}\right)}$ for $p=1,2$. Choi and Kim [7] classified $\exp B_{\mathcal{P}\left(l_{p}^{2}\right)}$ for $p=1,2, \infty$. Grecu [12] classified $\operatorname{ext} B_{\left.\mathcal{P}_{\left(2 l_{p}^{2}\right)}\right)}$ for $1<p<2$ or $2<p<\infty$. Kim et al. [35] showed that if E is a separable real Hilbert space with $\operatorname{dim}(E) \geq 2$, then, $\operatorname{ext} B_{\mathscr{P}\left({ }^{2} E\right)}=\exp B_{\mathscr{P}\left({ }^{2} E\right)}$. Kim [16] classified $\exp B_{\mathcal{P}\left(2 l_{p}^{2}\right)}$ for $1 \leq$ $p \leq \infty$. Kim ([18], [20]) characterized ext $B_{\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)}$, where $d_{*}(1, w)^{2}=\mathbb{R}^{2}$ with an octagonal norm $\|(x, y)\|_{w}=\max \left\{|x|,|y|, \frac{|x|+|y|}{1+w}\right\}$ for $0<w<1$. Kim [25] classified $\exp B_{\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)}$ and showed that $\exp B_{\mathscr{P}\left(d_{*}(1, w)^{2}\right)} \neq \operatorname{ext} B_{\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)}$. Recently, $\operatorname{Kim}([30],[33])$ classified $\operatorname{ext} B_{\mathcal{P}\left(2 \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}$) and $\exp B_{\mathcal{P}\left(\mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}$, where $\mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}=$ \mathbb{R}^{2} with a hexagonal norm $\|(x, y)\|_{h\left(\frac{1}{2}\right)}=\max \left\{|y|,|x|+\frac{1}{2}|y|\right\}$.

Parallel to the classification problems of ext $B_{\mathcal{P}\left(n^{n} E\right)}$ and $\exp B_{\mathcal{P}\left({ }^{n} E\right)}$, it seems to be very natural to study the classification problems of the extreme points and the exposed points of the unit ball of continuous (symmetric) multilinear forms on a Banach space.
$\operatorname{Kim}[17]$ initiated and classified $\operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{2}\right)}$ and $\exp B_{\mathcal{L}_{s}\left(l_{\infty}^{2}\right)}$. It was shown that $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)}=\exp B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{2}\right)}$.
Kim ([19], [21], [22], [24]) classified $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)}, \operatorname{ext} B_{\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)}$, $\exp B_{\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)}$, and $\exp B_{\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)} . \operatorname{Kim}([28],[29])$ also classified ext $B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)}$ and $\exp B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$. It was shown that ext $B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}=\exp B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}$ and ext $B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}=$ $\exp B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$. Kim [32] characterized ext $B_{\mathcal{L}\left({ }^{2} l_{\infty}^{n}\right)}$ and $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{n}\right)}$, and showed that
$\exp B_{\mathcal{L}\left(l^{2} l_{\infty}^{n}\right)}=\operatorname{ext} B_{\mathcal{L}\left(l^{2} l_{\infty}^{n}\right)}$ and $\exp B_{\mathcal{L}_{s}\left(l_{\infty}^{n}\right)}=\operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{n}\right)} . \operatorname{Kim}[34]$ characterized $\operatorname{ext} B_{\mathcal{L}\left(l^{2} l_{\infty}^{3}\right)}$ and $\exp B_{\mathcal{L}\left({ }^{2} l_{\infty}^{3}\right)}$. Kim [35] characterized $\operatorname{sm} B_{\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)}$. Kim [36] studied ext $B_{\mathcal{L}\left({ }^{2} l_{\infty}\right)}$. Cavalcante et al. [2] characterized $\operatorname{ext} B_{\mathcal{L}\left({ }^{n} l_{\infty}^{m}\right)}$. Recently, Kim $[37]$ classified ext $B_{\mathcal{L}\left({ }^{n} l_{\infty}^{2}\right)}$ and ext $B_{\mathcal{L} s\left({ }^{n} l_{\infty}^{2}\right)}$. It was shown that $\left|\operatorname{ext} B_{\mathcal{L}\left({ }^{n} l_{\infty}^{2}\right)}\right|=2^{\left(2^{n}\right)}$ and $\left|\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)}\right|=2^{n+1}$, and that $\exp B_{\mathcal{L}\left({ }^{n} l_{\infty}^{2}\right)}=\operatorname{ext} B_{\mathcal{L}\left({ }^{n} l_{\infty}^{2}\right)}$ and $\exp B_{\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)}=$ $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)}$. We refer to ([1]-[7], $\quad[9]-[52]$ and references therein) for some recent work about extremal properties of homogeneous polynomials and multilinear forms on Banach spaces.

Let $\mathbb{R}_{o(w)}^{2}$ denote \mathbb{R}^{2} with the octagonal norm with weight $0<w, w \neq 1$

$$
\|(x, y)\|_{o(w)}=\max \{|x|+w|y|,|y|+w|x|\} .
$$

Let $\mathcal{F}=\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ or $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$. First we present formulae for the norm of $T \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$. Using these formulae, we classify the extreme points of the unit ball of \mathcal{F}. We show that

$$
\begin{aligned}
& \operatorname{ext} B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)} \neq \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right) \text { for } w \in[\sqrt{2}-1, \sqrt{2}+1] \backslash\{1\} \\
& \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}=\operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right) \text { for } w \in(0, \infty) \backslash[\sqrt{2}-1, \sqrt{2}+1]
\end{aligned}
$$

We present formulae for the norm of $f \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)^{*}$. Using these formulae, we show that every extreme point is exposed in this space. We show that

$$
\begin{aligned}
& \exp B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)} \neq \exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right) \text { for } w \in[\sqrt{2}-1, \sqrt{2}+1] \backslash\{1\}, \\
& \exp B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}=\exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right) \text { for } w \in(0, \infty) \backslash[\sqrt{2}-1, \sqrt{2}+1] .
\end{aligned}
$$

We classify the smooth points of the unit balls of the spaces of symmetric bilinear forms and bilinear forms on $\mathbb{R}_{o(w)}^{2}$, respectively.

We show that $\operatorname{sm} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ is a proper subset of $\operatorname{sm} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$.

2 Computation of the norm of bilinear forms of $\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$

Let $\mathbb{R}_{o(w)}^{2}$ denote \mathbb{R}^{2} with the octagonal norm with weight $0<w, w \neq 1$

$$
\|(x, y)\|_{o(w)}=\max \{|x|+w|y|,|y|+w|x|\} .
$$

Notice that

$$
\|(x, y)\|_{o(w)}=\|(y, x)\|_{o(w)}=\|(x,-y)\|_{o(w)} \text { for }(x, y) \in \mathbb{R}_{o(w)}^{2}
$$

Notice that if $0<w<1$, then

$$
\operatorname{ext} B_{\mathbb{R}_{o(w)}^{2}}=\left\{ \pm(1,0), \pm\left((1+w)^{-1}, \pm(1+w)^{-1}\right), \pm(0,1)\right\}
$$

and that if $w>1$, then

$$
\operatorname{ext} B_{\mathbb{R}_{o(w)}^{2}}=\left\{ \pm\left(w^{-1}, 0\right), \pm\left((1+w)^{-1}, \pm(1+w)^{-1}\right), \pm\left(0, w^{-1}\right)\right\}
$$

Let $T \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ be such that $T=a x_{1} x_{2}+b y_{1} y_{2}+c x_{1} y_{2}+d x_{2} y_{1}$. For simplicity, we will denote T by (a, b, c, d).

Theorem 1. Let $0<w, w \neq 1$ and $T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a x_{1} x_{2}+b y_{1} y_{2}+c x_{1} y_{2}+$ $d x_{2} y_{1} \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$. Then there exists (unique) $T^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a^{*} x_{1} x_{2}+$ $b^{*} y_{1} y_{2}+c^{*} x_{1} y_{2}+d^{*} x_{2} y_{1} \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ such that $a^{*}, b^{*}, c^{*}, d^{*} \in\{ \pm a, \pm b, \pm c, \pm d\}$ with $a^{*} \geq b^{*} \geq 0, c^{*} \geq\left|d^{*}\right|$ and $\|T\|=\left\|T^{\prime}\right\|$ and that T is extreme (exposed, respectively) if and only if T^{\prime} is extreme (exposed, respectively).

Proof. If $a<0$, taking $-T$, we assume $a \geq 0$.
Case 1. $|b|>a$

$$
\text { Let } \begin{aligned}
T_{1}^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & :=T\left(\left(y_{1}, \operatorname{sign}(b) x_{1}\right),\left(y_{2}, x_{2}\right)\right) \\
& =|b| x_{1} x_{2}+|a| y_{1} y_{2}+\operatorname{sign}(b) d x_{1} y_{2}+c x_{2} y_{1}
\end{aligned}
$$

Then $\left\|T_{1}^{\prime}\right\|=\|T\|$ and T is extreme if and only if T_{1}^{\prime} is extreme. If $\operatorname{sign}(b) d \geq|c|$, then the bilinear form T_{1}^{\prime} satisfies the condition of the theorem. Suppose that $\operatorname{sign}(b) d<|c|$.

$$
\begin{aligned}
& \text { Subcase 1. } c \geq 0 \\
& \text { If } \operatorname{sign}(b) d=|d| \text { or }(\operatorname{sign}(b) d=-|d|,|d| \leq|c|) \\
& \begin{aligned}
\text { let } T_{2}^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right): & =T_{1}^{\prime}\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right) \\
& =|b| x_{1} x_{2}+|a| y_{1} y_{2}+|c| x_{1} y_{2}+\operatorname{sign}(b) d x_{2} y_{1} .
\end{aligned}
\end{aligned}
$$

Then $\left\|T_{2}^{\prime}\right\|=\|T\|$ and T is extreme (exposed, respectively) if and only if T_{2}^{\prime} is extreme (exposed, respectively). Hence, the bilinear form T_{2}^{\prime} satisfies the condition of the theorem. If $\operatorname{sign}(b) d=-|d|,|d|>|c|$,

$$
\text { let } \begin{aligned}
T_{2}^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & :=T_{1}^{\prime}\left(\left(x_{2},-y_{2}\right),\left(x_{1},-y_{1}\right)\right) \\
& =|b| x_{1} x_{2}+|a| y_{1} y_{2}+|\operatorname{sign}(b) d| x_{1} y_{2}-|c| x_{2} y_{1}
\end{aligned}
$$

Then $\left\|T_{2}^{\prime}\right\|=\|T\|$ and T is extreme (exposed, respectively) if and only if T_{2}^{\prime} is extreme (exposed, respectively). Hence, the bilinear form T_{2}^{\prime} satisfies the condition of the the theorem.

Subcase 2. $c<0$

$$
\text { Let } \begin{aligned}
T_{3}^{\prime}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & :=T_{1}^{\prime}\left(\left(-x_{1}, y_{1}\right),\left(-x_{2}, y_{2}\right)\right) \\
& =|b| x_{1} x_{2}+|a| y_{1} y_{2}-\operatorname{sign}(b) d x_{1} y_{2}+|c| x_{2} y_{1}
\end{aligned}
$$

Applying Subcase 1 to T_{3}^{\prime}, we can find a bilinear form T^{\prime} which satisfies the condition of the theorem.

Case 2. $|b| \leq a$

$$
\text { Let } \begin{aligned}
T_{4}^{\prime}\left(\left(x_{1}, y_{1}\right), \quad\left(x_{2}, y_{2}\right)\right) & :=T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, \operatorname{sign}(b) y_{2}\right)\right) \\
& =a x_{1} x_{2}+|b| y_{1} y_{2}+\operatorname{sign}(b) c x_{1} y_{2}+d x_{2} y_{1}
\end{aligned}
$$

Applying Case 1 to T_{4}^{\prime}, we can find a bilinear form T^{\prime} which satisfies the condition of the theorem.

Theorem 2. Let $0<w, w \neq 1$ and $T \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ be such that $T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$ $=a x_{1} x_{2}+b y_{1} y_{2}+c x_{1} y_{2}+d x_{2} y_{1}=(a, b, c, d)$ for some $a, b, c, d \in \mathbb{R}$. Then:
(a) If $0<w<1$, then

$$
\begin{aligned}
\|T\|= & \max \left\{|a|,|b|,|c|,|d|,(1+w)^{-1}(|a|+|c|),(1+w)^{-1}(|a|+|d|)\right. \\
& (1+w)^{-1}(|b|+|c|),(1+w)^{-1}(|b|+|d|),(1+w)^{-2}(|a-b|+|c-d|) \\
& \left.(1+w)^{-2}(|a+b|+|c+d|)\right\}
\end{aligned}
$$

(b) If $1<w$, then

$$
\begin{aligned}
\|T\|= & \max \left\{w^{-2}|a|, w^{-2}|b|, w^{-2}|c|, w^{-2}|d|,(w(1+w))^{-1}(|a|+|c|)\right. \\
& (w(1+w))^{-1}(|a|+|d|),(w(1+w))^{-1}(|b|+|c|) \\
& (w(1+w))^{-1}(|b|+|d|),(1+w)^{-2}(|a-b|+|c-d|) \\
& \left.(1+w)^{-2}(|a+b|+|c+d|)\right\}
\end{aligned}
$$

Proof. (a). Let $0<w<1$. Notice that

$$
\operatorname{ext} B_{\mathbb{R}_{o(w)}^{2}}=\left\{ \pm(1,0), \pm\left((1+w)^{-1}, \pm(1+w)^{-1}\right), \pm(0,1)\right\}
$$

By the bilinearity of T, we have

$$
\begin{aligned}
& \|T\| \\
= & \sup \left\{\left|T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)\right|:\left(x_{j}, y_{j}\right) \in \operatorname{ext} B_{\mathbb{R}_{o(w)}^{2}} \text { for } j=1,2\right\} \\
= & \max \{|T((1,0),(1,0))|,|T((0,1),(0,1))|,|T((1,0),(0,1))|,|T((0,1),(1,0))| \\
& \left|T\left((1,0), \pm\left((1+w)^{-1}, \pm(1+w)^{-1}\right)\right)\right|,\left|T\left(\pm\left((1+w)^{-1}, \pm(1+w)^{-1}\right),(1,0)\right)\right| \\
& \left|T\left((0,1), \pm\left((1+w)^{-1}, \pm(1+w)^{-1}\right)\right)\right|,\left|T\left(\pm\left((1+w)^{-1}, \pm(1+w)^{-1}\right),(0,1)\right)\right| \\
& \mid T\left(\pm\left((1+w)^{-1}, \pm(1+w)^{-1}\right),\left((1+w)^{-1},-(1+w)^{-1}\right) \mid\right. \\
& \left|T\left(\left((1+w)^{-1},-(1+w)^{-1}\right),\left((1+w)^{-1},(1+w)^{-1}\right)\right)\right| \\
& \left|T\left(\left((1+w)^{-1},(1+w)^{-1}\right),\left((1+w)^{-1},(1+w)^{-1}\right)\right)\right| \\
& \left.\left|T\left(\left((1+w)^{-1},-(1+w)^{-1}\right),\left((1+w)^{-1},-(1+w)^{-1}\right)\right)\right|\right\} \\
= & \max \left\{|a|,|b|,|c|,|d|,(1+w)^{-1}(|a|+|c|),(1+w)^{-1}(|a|+|d|),(1+w)^{-1}(|b|+|c|)\right. \\
& \left.(1+w)^{-1}(|b|+|d|),(1+w)^{-2}(|a-b|+|c-d|),(1+w)^{-2}(|a+b|+|c+d|)\right\}
\end{aligned}
$$

(b). Let $w>1$.

Claim. $\|T\|_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}=\left\|w^{-2} T\right\|_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(1 / w)}^{2}\right)}$.
Notice that

$$
\left\|\left(w^{-1} x, w^{-1} y\right)\right\|_{o(w)}=\|(x, y)\|_{o(1 / w)}
$$

for $(x, y) \in \mathbb{R}^{2}$. It follows that

$$
\begin{aligned}
& \left\|w^{-2} T\right\|_{\mathcal{L}\left(2 \mathbb{R}_{o(1 / w)}^{2}\right)} \\
= & \sup _{\left\|\left(x_{j}, y_{j}\right)\right\|_{o(1 / w)}=1, j=1,2}\left|w^{-2} a x_{1} x_{2}+w^{-2} b y_{1} y_{2}+w^{-2} c x_{1} y_{2}+w^{-2} d x_{2} y_{1}\right| \\
= & \sup _{\left\|\left(w^{-1} x_{j}, w^{-1} y_{j}\right)\right\|_{o(w)}=1, j=1,2} \mid a\left(w^{-1} x_{1}\right)\left(w^{-1} x_{2}\right)+w^{-2} b\left(w^{-1} y_{1}\right)\left(w^{-1} y_{2}\right) \\
+ & w^{-2} c\left(w^{-1} x_{1}\right)\left(w^{-1} y_{2}\right)+w^{-2} d\left(w^{-1} x_{2}\right)\left(w^{-1} y_{1}\right) \mid \\
= & \|T\|_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} .
\end{aligned}
$$

By (a), we have

$$
\begin{aligned}
& \|T\|_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}=\left\|\left(w^{-2} a, w^{-2} b, w^{-2} c, w^{-2} d\right)\right\|_{\mathcal{L}\left(\mathbb{R}_{o(1 / w)}^{2}\right)} \\
= & \max \left\{w^{-2}|a|, w^{-2}|b|, w^{-2}|c|, w^{-2}|d|,\left(1+w^{-1}\right)^{-1}\left(w^{-2}|a|+w^{-2}|c|\right),\right. \\
& \left(1+w^{-1}\right)^{-1}\left(w^{-2}|a|+w^{-2}|d|\right),\left(1+w^{-1}\right)^{-1}\left(w^{-2}|b|+w^{-2}|c|\right), \\
& \left(1+w^{-1}\right)^{-1}\left(w^{-2}|b|+w^{-2}|d|\right),\left(1+w^{-1}\right)^{-2}\left(w^{-2}|a-b|+w^{-2}|c-d|\right), \\
& \left.\left(1+w^{-1}\right)^{-2}\left(w^{-2}|a+b|+w^{-2}|c+d|\right)\right\} \\
= & \left\{w^{-2}|a|, w^{-2}|b|, w^{-2}|c|, w^{-2}|d|,(w(1+w))^{-1}(|a|+|c|),\right. \\
& (w(1+w))^{-1}(|a|+|d|),(w(1+w))^{-1}(|b|+|c|), \\
& (w(1+w))^{-1}(|b|+|d|),(1+w)^{-2}(|a-b|+|c-d|), \\
& \left.(1+w)^{-2}(|a+b|+|c+d|)\right\} .
\end{aligned}
$$

3 The extreme points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$

Let $0<w, w \neq 1$ and $T \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ be such that $T=a x_{1} x_{2}+b y_{1} y_{2}+$ $c\left(x_{1} y_{2}+x_{2} y_{1}\right)$. For simplicity, we will denote T by (a, b, c).

Theorem 3. (a) If $0<w \leq \sqrt{2}-1$, then

$$
\begin{aligned}
\operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}= & \left\{ \pm\left(1, w^{2}, \pm w\right), \pm\left(w^{2}, 1, \pm w\right), \pm\left(1,-\left(w^{2}+2 w\right), \pm w\right)\right. \\
& \pm\left(-\left(w^{2}+2 w\right), 1, \pm w\right), \pm\left(\frac{(1+w)^{2}}{2},-\frac{(1+w)^{2}}{2}, \pm \frac{1-w^{2}}{2}\right) \\
& \left. \pm\left(\frac{1-w^{2}}{2},-\frac{\left(1-w^{2}\right)}{2}, \pm \frac{(1+w)^{2}}{2}\right)\right\}
\end{aligned}
$$

(b) If $\sqrt{2}-1<w<1$, then,

$$
\begin{aligned}
\operatorname{ext} B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)}= & \left\{ \pm\left(1, w^{2}, \pm w\right), \pm\left(w^{2}, 1, \pm w\right), \pm\left(w, w^{2}+w-1, \pm 1\right)\right. \\
& \pm\left(w^{2}+w-1, w, \pm 1\right), \pm\left(1,1, \frac{ \pm\left(w^{2}+2 w-1\right)}{2}\right) \\
& \pm\left(\frac{w^{2}+2 w-1}{2}, \frac{w^{2}+2 w-1}{2}, \pm 1\right), \pm(1,-1, \pm w) \\
& \pm(w,-w, \pm 1)\}
\end{aligned}
$$

(c) If $1<w<\sqrt{2}+1$, then,

$$
\begin{aligned}
\operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}= & \left\{ \pm\left(w^{2}, 1, \pm w\right), \pm\left(1, w^{2}, \pm w\right), \pm\left(w,-w^{2}+w+1, \pm w^{2}\right)\right. \\
& \pm\left(-w^{2}+w+1, w, \pm w^{2}\right), \pm\left(w^{2}, w^{2}, \frac{ \pm\left(-w^{2}+2 w+1\right)}{2}\right) \\
& \pm\left(\frac{-\left(w^{2}+2 w-1\right)}{2}, \frac{-\left(w^{2}+2 w-1\right)}{2}, \pm w^{2}\right) \\
& \left. \pm\left(w^{2},-w^{2}, \pm w\right), \pm\left(w,-w, \pm w^{2}\right)\right\}
\end{aligned}
$$

(d) If $\sqrt{2}+1<w$, then,

$$
\begin{aligned}
\operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}= & \left\{ \pm\left(w^{2}, 1, \pm w\right), \pm\left(1, w^{2}, \pm w\right), \pm\left(w^{2},-(1+2 w), \pm w\right)\right. \\
& \pm\left(-(1+2 w), w^{2}, \pm w\right), \pm\left(\frac{(1+w)^{2}}{2},-\frac{(1+w)^{2}}{2}, \pm \frac{w^{2}-1}{2}\right) \\
& \left. \pm\left(\frac{w^{2}-1}{2},-\frac{\left(w^{2}-1\right)}{2}, \pm \frac{(1+w)^{2}}{2}\right)\right\}
\end{aligned}
$$

Proof. Let $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ be such that $T=(a, b, c)$. By Theorem 1 , we may assume that $a \geq|b|$ and $c \geq 0$. Suppose that $0<w<1$.

Case 1. $b \geq 0$
Subcase 1. $b=a$
Suppose that $a=b=1$. By Theorem 2(a), $c \leq w$. If $c=w$, then $T=(1,1, w)$, which is a contradiction because $\|T\|=1$. Hence, $c<w$. Since $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$,
we have $\frac{1}{(1+w)^{2}}(a+b+2 c)=1$, which shows that $T=\left(1,1, \frac{w^{2}+2 w-1}{2}\right)$ for $\sqrt{2}-1 \leq$ $w<1$.

Claim 1. $T=\left(1,1, \frac{w^{2}+2 w-1}{2}\right) \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1 \leq w<1$.
Let

$$
T^{ \pm}=\left(1,1, \frac{w^{2}+2 w-1}{2} \pm \gamma\right)
$$

be such that $1=\left\|T^{ \pm}\right\|$for some $\gamma \in \mathbb{R}$. By Theorem 2(a), we have

$$
\frac{(1+w)^{2} \pm 2 \gamma}{(1+w)^{2}} \leq 1
$$

hence, $\gamma=0$.
Suppose that $a=b<1$. If $c<1$, since $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$, we have $\frac{1}{1+w}(a+$ $c)=\frac{1}{(1+w)^{2}}(a+b+2 c)=1$, which shows that $w^{2}=1$, which is a contradiction. Hence, $c=1$. Since $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$, we have $\frac{1}{1+w}(a+c)=1$ or $\frac{1}{1+w}(a+c)=$ $\frac{1}{(1+w)^{2}}(a+b+2 c)=1$. If $\frac{1}{1+w}(a+c)=1$, then $T=(w, w, 1)$, which is a contradiction because $\|T\|=1$. If $\frac{1}{1+w}(a+c)=\frac{1}{(1+w)^{2}}(a+b+2 c)=1$, then $T=\left(w, w^{2}+w-1,1\right)$, which is impossible because $a=b$.

Subcase 2: $b<a$
Suppose that $a=1$. By Theorem 2(a), $c \leq w$. If $c=w$, then $\frac{1}{(1+w)^{2}}(a+b+2 c)=$ 1 , hence, $T=\left(1, w^{2}, w\right)$ for $0<w<1$.

Claim 2. $T=\left(1, w^{2}, w\right) \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$) for $0<w<1$.
Let

$$
T^{ \pm}=\left(1, w^{2} \pm \delta, w \pm \gamma\right)
$$

be such that $1=\left\|T^{ \pm}\right\|$for some $\delta, \gamma \in \mathbb{R}$. By Theorem 2(a), we have

$$
\frac{1}{1+w}(1+w \pm \delta) \leq 1, \frac{1}{(1+w)^{2}}\left((1+w)^{2} \pm(\delta+2 \gamma)\right) \leq 1,
$$

hence, $\delta=\gamma=0$. If $c<w$, then $\frac{1}{(1+w)^{2}}(a+b+2 c)=1$. Let

$$
T^{ \pm}=\left(a, b \pm \frac{2}{n}, c \mp \frac{1}{n}\right)
$$

so that $1=\left\|T^{ \pm}\right\|$for some big $n \in \mathbb{N}$, which shows that T is not extreme. It is a contradiction.

Suppose that $a<1$. If $c<1$, then $1=\frac{1}{1+w}(a+c)$ or $1=\frac{1}{(1+w)^{2}}(a+b+2 c)$, which is a contradiction because $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$. Hence, $c=1$. Since $T \in$ $\operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$, we have $\frac{1}{1+w}(a+c)=\frac{1}{(1+w)^{2}}(a+b+2 c)=1$, then $T=\left(w, w^{2}+\right.$ $w-1,1)$ for $\frac{\sqrt{5}-1}{2} \leq w<1$.

Claim 3. $T=\left(w, w^{2}+w-1,1\right) \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ for $\frac{\sqrt{5}-1}{2} \leq w<1$.
Let

$$
T^{ \pm}=\left(w \pm \epsilon, w^{2}+w-1 \pm \delta, 1\right)
$$

be such that $1=\left\|T^{ \pm}\right\|$for some $\epsilon, \delta \in \mathbb{R}$. By Theorem 2(a), we have

$$
1=\frac{1}{1+w}(1+w \pm \epsilon) \leq 1, \frac{1}{(1+w)^{2}}\left((1+w)^{2} \pm(\epsilon+\delta)\right) \leq 1
$$

hence, $\epsilon=\delta=0$.
Case 2: $b<0$
Subcase 1: $|b|=a$
Suppose that $a=|b|=1$. By Theorem 2(a), $c \leq w$. If $c=w$, then $T=$ $(1,-1, w)$ for $\sqrt{2}-1 \leq w<1$.

Claim 4. $T=(1,-1, w) \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1 \leq w<1$.
Let

$$
T^{ \pm}=(1,-1, w \pm \gamma)
$$

be such that $1=\left\|T^{ \pm}\right\|$for some $\gamma \in \mathbb{R}$. By Theorem 2(a), we have

$$
\frac{1}{1+w}(1+w \pm \gamma) \leq 1
$$

hence, $\gamma=0$.
If $c<w$, then $\frac{1}{(1+w)^{2}}(a-b)=1$, hence, $T=(1,-1, c)$ for $0 \leq c<w=\sqrt{2}-1$, which is a contradiction because $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(\sqrt{2}-1)}^{2}\right)}$.

Suppose that $a=|b|<1$. Suppose that $c<1$. Note that if $\frac{1}{1+w}(a+c)<1$, then $\frac{1}{(1+w)^{2}}(a-b)=1$ or $\frac{1}{(1+w)^{2}}(a+b+2 c)=1$, which is a contradiction because $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$. Hence, $\frac{1}{1+w}(a+c)=1$.

If $\frac{1}{(1+w)^{2}}(a-b)=1$, then $T=\left(\frac{(1+w)^{2}}{2},-\frac{(1+w)^{2}}{2}, \frac{1-w^{2}}{2}\right)$ for $0<w \leq \sqrt{2}-1$.
Claim 5. $T=\left(\frac{(1+w)^{2}}{2},-\frac{(1+w)^{2}}{2}, \frac{1-w^{2}}{2}\right) \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $0<w \leq \sqrt{2}-1$.
Let

$$
T^{ \pm}=\left(\frac{(1+w)^{2}}{2} \pm \epsilon,-\frac{(1+w)^{2}}{2} \pm \delta, \frac{1-w^{2}}{2} \pm \gamma\right)
$$

be such that $1=\left\|T^{ \pm}\right\|$for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Since

$$
\left|T^{ \pm}\left((1,0),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \leq 1(j=1,2)
$$

we have $\epsilon+\gamma=0$. Since

$$
\left|T^{ \pm}\left((0,1),\left(\frac{1}{1+w},-\frac{1}{1+w}\right)\right)\right| \leq 1(j=1,2)
$$

we have $-\delta+\gamma=0$. Since

$$
\left|T^{ \pm}\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),\left(\frac{1}{1+w},-\frac{1}{1+w}\right)\right)\right| \leq 1(j=1,2)
$$

we have $\epsilon-\delta=0$. Hence, $\epsilon=\delta=\gamma=0$.
If $\frac{1}{(1+w)^{2}}(a+b+2 c)=1$, then $T=\left(\frac{1-w^{2}}{2},-\frac{\left(1-w^{2}\right)}{2}, \frac{(1+w)^{2}}{2}\right)$ for $0<w \leq \sqrt{2}-1$.
Claim 6. $T=\left(\frac{1-w^{2}}{2},-\frac{\left(1-w^{2}\right)}{2}, \frac{(1+w)^{2}}{2}\right) \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $0<w \leq \sqrt{2}-1$.
Let

$$
T^{ \pm}=\left(\frac{1-w^{2}}{2} \pm \epsilon,-\frac{\left(1-w^{2}\right)}{2} \pm \delta, \frac{(1+w)^{2}}{2} \pm \gamma\right)
$$

be such that $1=\left\|T^{ \pm}\right\|$for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Since

$$
\left|T^{ \pm}\left((1,0),\left(\frac{1}{1+w},-\frac{1}{1+w}\right)\right)\right| \leq 1(j=1,2)
$$

we have $\epsilon-\gamma=0$. Since

$$
\left|T^{ \pm}\left((0,1),\left(\frac{1}{1+w},-\frac{1}{1+w}\right)\right)\right| \leq 1(j=1,2)
$$

we have $-\delta+\gamma=0$. Since

$$
\left|T^{ \pm}\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \leq 1(j=1,2)
$$

we have $\epsilon+\delta+2 \gamma=0$. Hence, $\epsilon=\delta=\gamma=0$.
Suppose that $c=1$. By Theorem 2(a), $a \leq w$. If $a=w$, then $T=(w,-w, 1)$ $\sqrt{2}-1 \leq w<1$.

Claim 7. $T=(w,-w, 1) \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1 \leq w<1$
Let

$$
T^{ \pm}=(w \pm \epsilon,-w \pm \delta, 1)
$$

be such that $1=\left\|T^{ \pm}\right\|$for some $\epsilon, \delta \in \mathbb{R}$. By Theorem 2(a), we have

$$
\frac{1}{1+w}(1+w \pm \epsilon) \leq 1, \frac{1}{1+w}(1+|-w \pm \delta|) \leq 1
$$

hence, $\epsilon=\delta=0$.
Subcase 2. $|b|<a$
Suppose that $a=1$. By Theorem 2(a), $c \leq w$. If $c=w$, then $\frac{1}{(1+w)^{2}}(a-b)=1$, hence, $T=\left(1,-\left(2 w+w^{2}\right), w\right)$ for $0<w \leq \sqrt{2}-1$.

Claim 8. $T=\left(1,-\left(w^{2}+2 w\right), w\right) \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $0<w \leq \sqrt{2}-1$.
Let

$$
T^{ \pm}=\left(1,-\left(w^{2}+2 w\right) \pm \delta, w \pm \gamma\right)
$$

be such that $1=\left\|T^{ \pm}\right\|$for some $\delta, \gamma \in \mathbb{R}$. By Theorem 2(a), we have

$$
\frac{1}{1+w}(1+w \pm \gamma) \leq 1, \frac{1}{(1+w)^{2}}\left((1+w)^{2} \pm \delta\right) \leq 1
$$

hence, $\delta=\gamma=0$.
If $c<w$, then $\frac{1}{(1+w)^{2}}(a-b) \leq 1$ and $\frac{1}{(1+w)^{2}}(a+b+2 c)<1$, which is a contradiction because $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$. Suppose that $a<1$. Suppose that $c=1$. By Theorem 2(a), $a \leq w$. If $a<w$, then $\frac{1}{(1+w)^{2}}(a-b)<1$ and $\frac{1}{(1+w)^{2}}(a+$ $b+2 c)=1$, which is a contradiction because $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$. Hence, $a=w$ and $\frac{1}{(1+w)^{2}}(a+b+2 c)=1$, for $\sqrt{2}-1<w<\frac{\sqrt{5}-1}{2}$.

Claim 9. $T=\left(w, w^{2}+w-1,1\right) \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1<w<\frac{\sqrt{5}-1}{2}$.
Let

$$
T^{ \pm}=\left(w \pm \epsilon, w^{2}+w-1 \pm \delta, 1\right)
$$

be such that $1=\left\|T^{ \pm}\right\|$for some $\epsilon, \delta \in \mathbb{R}$. By Theorem 2(a), we have

$$
1=\frac{1}{1+w}(1+w \pm \epsilon) \leq 1, \frac{1}{(1+w)^{2}}\left((1+w)^{2} \pm(\epsilon+\delta)\right) \leq 1,
$$

hence, $\epsilon=\delta=0$. If $c<1$, then $\frac{1}{1+w}(a+c)=\frac{1}{(1+w)^{2}}(a-b)=\frac{1}{(1+w)^{2}}(a+b+2 c)=1$, which is a contradiction.

Suppose that $1<w$. By the claim in the proof (b) of Theorem 2,

$$
\left.\operatorname{ext} B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)}=\left\{w^{2} T: T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(1 / w)}^{2}\right.}\right)\right\}
$$

By (a) and (b) in the case of $0<w<1$, (c) and (d) follow. Therefore, we complete the proof.

4 The extreme points of the unit ball of $\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$

Theorem 4. $\operatorname{Let} T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a x_{1} x_{2}+b y_{1} y_{2}+c x_{1} y_{2}+d x_{2} y_{1}=(a, b, c, d) \in$ $\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$. Then the following are equivalent:
(a) $T \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$;
(b) $(-a,-b,-c,-d) \in \operatorname{ext} B_{\mathcal{L}^{2} \mathbb{R}_{o(w)}^{2}}$;
(c) $(a, b,-c,-d) \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$;
(d) $(a,-b, c,-d) \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$;
(e) $(a,-b,-c, d) \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$;
(f) $(b, a, c, d) \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$;
(g) $(d, c, a, b) \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$.

Proof. Notice that

$$
\begin{aligned}
(-a,-b,-c,-d) & =T\left(\left(x_{1}, y_{1}\right),\left(-x_{2},-y_{2}\right)\right) \\
(a, b,-c,-d) & =T\left(\left(x_{1},-y_{1}\right),\left(x_{2},-y_{2}\right)\right) \\
(a,-b, c,-d) & =T\left(\left(x_{1},-y_{1}\right),\left(x_{2}, y_{2}\right)\right) \\
(a,-b,-c, d) & =T\left(\left(x_{1}, y_{1}\right),\left(x_{2},-y_{2}\right)\right) \\
(b, a, c, d) & =T\left(\left(y_{2}, x_{2}\right),\left(y_{1}, x_{1}\right)\right) \\
(d, c, a, b) & =T\left(\left(y_{2}, x_{2}\right),\left(x_{1}, y_{1}\right)\right)
\end{aligned}
$$

and that

$$
\left\|\left(x_{j}, y_{j}\right)\right\|_{o(w)}=\left\|\left(y_{j}, x_{j}\right)\right\|_{o(w)}=\left\|\left(x_{j},-y_{j}\right)\right\|_{o(w)}
$$

for $\left(x_{j}, y_{j}\right) \in \mathbb{R}^{2}$ and $j=1,2$. We complete the proof.

For $T \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$, we let

$$
\begin{aligned}
& \operatorname{Norm}(T) \\
= & \left\{\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in \operatorname{ext} B_{\mathbb{R}_{o(w)}^{2}} \times \operatorname{ext} B_{\mathbb{R}_{o(w)}^{2}}:\left|T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)\right|=\|T\|\right\} .
\end{aligned}
$$

We call $\operatorname{Norm}(T)$ the norming set of T. By Theorems 2 and 4, it suffices to consider only $T=(a, b, c, d) \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ with $a \geq b \geq 0$ and $c \geq|d|$ in order to classify the extreme points of $\left.B_{\mathcal{L}\left(\mathbb{R}^{2}\right.}{ }_{o(w)}\right)$.

Theorem 5. Let $0<w, w \neq 1$ and $T \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ be such that $T=a x_{1} x_{2}+$ $b y_{1} y_{2}+c x_{1} y_{2}+d x_{2} y_{1}$ with $a \geq b \geq 0$ and $c \geq|d|$. Then:
(a) Let $0<w \leq \sqrt{2}-1$. Then, $T \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ if and only if
$T \in\left\{\left(1, w^{2}, w, w\right),\left(w, w, 1, w^{2}\right),\left(1, w^{2}+2 w, w,-w\right)\right.$, $\left(w, w, 1,-\left(w^{2}+2 w\right)\right),\left(\frac{(1+w)^{2}}{2}, \frac{(1+w)^{2}}{2}, \frac{1-w^{2}}{2},-\left(\frac{1-w^{2}}{2}\right)\right)$, $\left.\left(\frac{1-w^{2}}{2}, \frac{1-w^{2}}{2}, \frac{(1+w)^{2}}{2},-\frac{(1+w)^{2}}{2}\right)\right\}$.
(b) Let $\sqrt{2}-1<w \leq \frac{\sqrt{5}-1}{2}$. Then, $T \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ if and only if

$$
\begin{aligned}
T \in & \left\{\left(1, w^{2}, w, w\right),\left(w, w, 1, w^{2}\right),\left(1,1, w, w^{2}+w-1\right)\right. \\
& \left.\left(w,-\left(w^{2}+w-1\right), 1,-1\right),(1,1, w,-w),(w, w, 1,-1)\right\}
\end{aligned}
$$

(c) Let $\frac{\sqrt{5}-1}{2}<w<1$. Then, $T \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ if and only if

$$
\begin{aligned}
T \in & \left\{\left(1, w^{2}, w, w\right),\left(w, w, 1, w^{2}\right),\left(1,1, w, w^{2}+w-1\right)\right. \\
& \left.\left(w, w^{2}+w-1,1,1\right),(1,1, w,-w),(w, w, 1,-1)\right\}
\end{aligned}
$$

(d) Let $1<w \leq \frac{\sqrt{5}+1}{2}$. Then, $T \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ if and only if

$$
\begin{aligned}
T \in\{ & \left(w^{2}, 1, w, w\right),\left(w, w, w^{2}, 1\right),\left(w,-w^{2}+w+1, w^{2}, w^{2}\right) \\
& \left.\left(w^{2}, w^{2}, w,-w^{2}+w+1\right),\left(w^{2}, w^{2}, w,-w\right),\left(w, w, w^{2},-w^{2}\right)\right\} .
\end{aligned}
$$

(e) Let $\frac{\sqrt{5}+1}{2}<w \leq \sqrt{2}+1$. Then, $T \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ if and only if

$$
\begin{aligned}
T \in\{ & \left(w^{2}, 1, w, w\right),\left(w, w, w^{2}, 1\right),\left(w,-\left(-w^{2}+w+1\right), w^{2},-w^{2}\right) \\
& \left.\left(w^{2}, w^{2}, w,-w^{2}+w+1\right),\left(w^{2}, w^{2}, w,-w\right),\left(w, w, w^{2},-w^{2}\right)\right\} .
\end{aligned}
$$

(f) Let $\sqrt{2}+1<w$ Then, $T \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ if and only if

$$
\begin{aligned}
T \in & \left\{\left(w^{2}, 1, w, w\right),\left(w, w, w^{2}, 1\right),\left(w^{2}, 1+2 w, w,-w\right)\right. \\
& \left(w, w, w^{2},-(1+2 w)\right),\left(\frac{(1+w)^{2}}{2}, \frac{(1+w)^{2}}{2}, \frac{w^{2}-1}{2},-\left(\frac{w^{2}-1}{2}\right)\right) \\
& \left.\left(\frac{w^{2}-1}{2}, \frac{w^{2}-1}{2}, \frac{(1+w)^{2}}{2},-\frac{(1+w)^{2}}{2}\right)\right\} .
\end{aligned}
$$

Proof. Suppose that $0<w<1$.
Case 1. $c=|d|$.
First, suppose that $c=d$.
Since $T \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$, we have $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)}$. By Theorem 3, we have

$$
\begin{aligned}
T= & \left(1, w^{2}, w, w\right)(0<w<1) \\
& \left(1,1, \frac{w^{2}+2 w-1}{2}, \frac{w^{2}+2 w-1}{2}\right)(\sqrt{2}-1 \leq w<1), \\
& \left(w,-\left(w^{2}+w-1\right), 1,-1\right)\left(\sqrt{2}-1<w \leq \frac{\sqrt{5}-1}{2}\right) \text { or } \\
& \left(w, w^{2}+w-1,1,1\right)\left(\frac{\sqrt{5}-1}{2}<w<1\right) .
\end{aligned}
$$

Claim 1. $T=\left(1, w^{2}, w, w\right) \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ for $0<w<1$.
Note that

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & ((1,0),(1,0)),\left((1,0),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right),\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),(1,0)\right) \\
& \left.\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right\}
\end{aligned}
$$

Let

$$
T^{ \pm}=\left(1 \pm \epsilon, w^{2} \pm \delta, w \pm \gamma, w \pm \rho\right)
$$

be such that $\left\|T^{ \pm}\right\|=1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since

$$
\begin{aligned}
& \left|T^{ \pm}((1,0),(1,0))\right| \leq 1,\left|T^{ \pm}\left((1,0),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \leq 1 \\
& \left|T^{ \pm}\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),(1,0)\right)\right| \leq 1,\left|T^{ \pm}\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \leq 1
\end{aligned}
$$

we have $0=\epsilon=\delta=\gamma=\rho$. By Theorem 4, $\left(w, w, 1, w^{2}\right) \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $0<w<1$.

Claim 2. $T=\left(1,1, \frac{w^{2}+2 w-1}{2}, \frac{w^{2}+2 w-1}{2}\right) \notin \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1 \leq w<1$.
Let $n \in \mathbb{N}$ be such that

$$
\frac{w^{2}+2 w-1}{2}+\frac{1}{n}<w, \frac{2}{n(1+w)^{2}}<1 .
$$

Let

$$
T^{ \pm}=\left(1,1, \frac{w^{2}+2 w-1}{2} \pm \frac{1}{n}, \frac{w^{2}+2 w-1}{2} \mp \frac{1}{n}\right) .
$$

By Theorem $2(\mathrm{a}),\left\|T^{ \pm}\right\|=1, T=\frac{1}{2}\left(T^{+}+T^{-}\right)$. Since $T \neq T^{ \pm}, T \notin \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$.
Claim 3. $T=\left(w,-\left(w^{2}+w-1\right), 1,-1\right) \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1<w \leq \frac{\sqrt{5}+1}{2}$.
Note that

$$
\begin{aligned}
\operatorname{Norm}(T)= & \left\{((1,0),(0,1)),((0,1),(1,0)),\left((1,0),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right. \\
& \left.\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),(1,0)\right),\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right\}
\end{aligned}
$$

Let

$$
T^{ \pm}=\left(w \pm \epsilon,-\left(w^{2}+w-1\right) \pm \delta, 1 \pm \gamma,-1 \pm \rho\right)
$$

be such that $\left\|T^{ \pm}\right\|=1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since
$\left|T^{ \pm}((1,0),(0,1))\right| \leq 1,\left|T^{ \pm}((0,1),(1,0))\right| \leq 1$,
$\left|T^{ \pm}\left((1,0),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \leq 1,\left|T^{ \pm}\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \leq 1$,
we have $0=\epsilon=\delta=\gamma=\rho$.
Claim 4. $T=\left(w, w^{2}+w-1,1,1\right) \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ for $\frac{\sqrt{5}+1}{2}<w<1$.
Note that

$$
\begin{aligned}
\operatorname{Norm}(T)= & \left\{((1,0),(0,1)),((0,1),(1,0)),\left((1,0),\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right.\right. \\
& \left.\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),(1,0)\right),\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right\}
\end{aligned}
$$

Let

$$
T^{ \pm}=\left(w \pm \epsilon,-\left(w^{2}+w-1\right) \pm \delta, 1 \pm \gamma,-1 \pm \rho\right)
$$

be such that $\left\|T^{ \pm}\right\|=1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since
$\left|T^{ \pm}((1,0),(0,1))\right| \leq 1,\left|T^{ \pm}((0,1),(1,0))\right| \leq 1$,
$\left|T^{ \pm}\left((1,0),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \leq 1,\left|T^{ \pm}\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \leq 1$,
we have $0=\epsilon=\delta=\gamma=\rho$.
By Theorem 4, $\left(1,1, w, w^{2}+w-1\right) \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1<w<1$.
Suppose that $c=-d$.
By Theorem $4, S=(a,-b, c, c) \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$. Hence, $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$.
By Theorem 3, we have

$$
\begin{aligned}
S= & \left(\frac{(1+w)^{2}}{2},-\frac{(1+w)^{2}}{2}, \frac{1-w^{2}}{2}, \frac{1-w^{2}}{2}\right)(0<w \leq \sqrt{2}-1) \\
& \left(1,-\left(w^{2}+2 w\right), w, w\right)(0<w \leq \sqrt{2}-1),(1,-1, w, w)(\sqrt{2}-1 \leq w<1) .
\end{aligned}
$$

Claim 5. $S=\left(\frac{(1+w)^{2}}{2},-\frac{(1+w)^{2}}{2}, \frac{1-w^{2}}{2}, \frac{1-w^{2}}{2}\right) \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ for $0<w \leq \sqrt{2}-1$.
Notice that

$$
\begin{aligned}
\operatorname{Norm}(S)= & \left\{\left((1,0),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right),\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),(1,0)\right)\right. \\
& \left((0,1),\left(\frac{1}{1+w},-\frac{1}{1+w}\right)\right),\left(\left(\frac{1}{1+w},-\frac{1}{1+w}\right),(0,1)\right), \\
& \left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),\left(\frac{1}{1+w},-\frac{1}{1+w}\right)\right) \\
& \left.\left(\left(\frac{1}{1+w},-\frac{1}{1+w}\right),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right\} .
\end{aligned}
$$

Let

$$
S^{ \pm}=\left(\frac{(1+w)^{2}}{2} \pm \epsilon,-\frac{(1+w)^{2}}{2} \pm \delta, \frac{1-w^{2}}{2} \pm \gamma, \frac{1-w^{2}}{2} \pm \rho\right)
$$

be such that $\left\|S^{ \pm}\right\|=1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since

$$
\begin{aligned}
& \left|S^{ \pm}\left((1,0),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \leq 1,\left|S^{ \pm}\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),(1,0)\right)\right| \leq 1, \\
& \left|S^{ \pm}\left((0,1),\left(\frac{1}{1+w},-\frac{1}{1+w}\right)\right)\right| \leq 1,\left|S^{ \pm}\left(\left(\frac{1}{1+w},-\frac{1}{1+w}\right),(0,1)\right)\right| \leq 1,
\end{aligned}
$$

we have $0=\epsilon=\delta=\gamma=\rho$.
Claim 6. $S=\left(1,-\left(w^{2}+2 w\right), w, w\right) \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $0<w \leq \sqrt{2}-1$.
Note that

$$
\begin{aligned}
\operatorname{Norm}(S)= & \left\{((1,0),(1,0)),\left((1,0),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right. \\
& \left.\left(\left(\frac{1}{1+w},-\frac{1}{1+w}\right),(1,0)\right),\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right\}
\end{aligned}
$$

Let

$$
S^{ \pm}=\left(1 \pm \epsilon, w^{2}+2 w \pm \delta, w \pm \gamma,-w \pm \rho\right)
$$

be such that $\left\|S^{ \pm}\right\|=1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since
$\left|S^{ \pm}((1,0),(1,0))\right| \leq 1,\left|S^{ \pm}\left((1,0),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \leq 1$,
$\left|S^{ \pm}\left(\left(\frac{1}{1+w},-\frac{1}{1+w}\right),(1,0)\right)\right| \leq 1,\left|S^{ \pm}\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \leq 1$,
we have $0=\epsilon=\delta=\gamma=\rho$.
By Theorem $4,\left(w, w, 1,-\left(w^{2}+2 w\right)\right) \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $0<w \leq \sqrt{2}-1$.
Claim 7. $S=(1,-1, w, w) \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1 \leq w<1$.
Note that

$$
\begin{aligned}
\operatorname{Norm}(S)= & \left\{((1,0),(1,0)),((0,1),(0,1)),\left((1,0),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right. \\
& \left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),(1,0)\right),\left((0,1),\left(\frac{1}{1+w},-\frac{1}{1+w}\right)\right) \\
& \left.\left(\left(\frac{1}{1+w},-\frac{1}{1+w}\right),(0,1)\right)\right\}
\end{aligned}
$$

Let

$$
S^{ \pm}=(1 \pm \epsilon,-1 \pm \delta, w \pm \gamma, w \pm \rho)
$$

be such that $\left\|S^{ \pm}\right\|=1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since

$$
\begin{aligned}
& \left|S^{ \pm}((1,0),(1,0))\right| \leq 1,\left|S^{ \pm}((0,1),(0,1))\right| \leq 1 \\
& \left|S^{ \pm}\left((1,0),\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \leq 1,\left|S^{ \pm}\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right),(1,0)\right)\right| \leq 1,
\end{aligned}
$$

we have $0=\epsilon=\delta=\gamma=\rho$.
By Theorem 4, $(1,1, w,-w),(w, w, 1,-1) \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1 \leq w<1$.
Case 2. $c>|d|$.
Suppose that $a=1$.
Note that

$$
\begin{aligned}
\|T\|= & 1=\max \left\{a, b, c, \frac{1}{(1+w)}(a+c), \frac{1}{(1+w)}(b+c),\right. \\
& \left.\frac{1}{(1+w)^{2}}(a-b+c-d), \frac{1}{(1+w)^{2}}(a+b+c+d)\right\} .
\end{aligned}
$$

Hence, $c \leq w$. We claim that if $a=1, c<w$, then T is not extreme. Without a loss of generality we may assume that $b=1$. Then, $\frac{1}{(1+w)^{2}}(a-b+c-d)<1$. Hence,

$$
\|T\|=1=\max \left\{a, b, \frac{1}{(1+w)^{2}}(a+b+c+d)\right\} .
$$

Note that $\operatorname{Norm}(T)$ has at most 3 elements. Hence, T is not extreme, which is a contradiction. Hence, $a=b=1, c=w, 1=\frac{1}{(1+w)^{2}}(a+b+c+d)$. Therefore, $T=$ $\left(1,1, w, w^{2}+w-1\right)$ for $\sqrt{2}-1<w<1$. Since $\left(w, w^{2}+w-1,1,1\right) \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1<w<1$, by Theorem $4, T \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1<w<1$.

Suppose that $a<1$.
Note that if $c=1$, then $a=w$. Indeed, if $a<w$, then

$$
\|T\|=1=\max \left\{c, \frac{1}{(1+w)^{2}}(a-b+c-d), \frac{1}{(1+w)^{2}}(a+b+c+d)\right\},
$$

which shows that T is not extreme because $\operatorname{Norm}(T)$ has at most 3 elements. Hence, $a=w, c=1$. If $0 \leq b<w$, then $\frac{1}{(1+w)^{2}}(a-b+c-d)<1$. Hence,

$$
\|T\|=1=\max \left\{c, \frac{1}{(1+w)}(a+c), \frac{1}{(1+w)^{2}}(a+b+c+d)\right\}
$$

which shows that T is not extreme because $\operatorname{Norm}(T)$ has at most 3 elements. Therefore, $a=b=w, c=1$ and $T=\left(w, w, 1, w^{2}\right)$ for $0<w<1$. Since $\left(1, w^{2}, w, w\right) \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ for $0<w<1$, by Theorem $4, T \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ for $0<w<1$.

Suppose that $1<w$.
By the claim in the proof (b) of Theorem 2,

$$
\operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}=\left\{w^{2} T: T \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(1 / w)}^{2}\right)}\right\}
$$

By (a), (b) and (c) in the case of $0<w<1$, (d), (e) and (f) follow. Therefore, we complete the proof.

Notice that $\left(\operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)\right) \subseteq \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ for all $0<w, w \neq 1$.
Theorem 6. (a) If $w \in[\sqrt{2}-1, \sqrt{2}+1] \backslash\{1\}$, then

$$
\begin{gathered}
\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)} \backslash\left(\operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)\right) \\
=\left\{ \pm\left(1,1, \pm \frac{w^{2}+2 w-1}{2}, \pm \frac{w^{2}+2 w-1}{2}\right)\right. \\
\left.\quad \pm\left(\frac{w^{2}+2 w-1}{2}, \frac{w^{2}+2 w-1}{2}, \pm 1, \pm 1\right)\right\}
\end{gathered}
$$

(b) If $w \in(0, \infty) \backslash[\sqrt{2}-1, \sqrt{2}+1]$, then

$$
\left.\operatorname{ext} B_{\mathcal{L}_{s}\left(2^{2} \mathbb{R}_{o(w)}^{2}\right.}\right) \backslash\left(\operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)\right)=\emptyset
$$

Proof. It follows from Claim 2 in the proof of Theorem 5.
Kim [38] showed that for $n, m \geq 2, \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)}=\operatorname{ext} B_{\mathcal{L}\left({ }^{n} l_{\infty}^{2}\right)} \cap \mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)$ and $\operatorname{ext} B_{\mathcal{L}_{s}\left(l_{\infty}^{m+1}\right)} \neq \operatorname{ext} B_{\mathcal{L}\left(l_{\infty}^{m+1}\right)} \cap \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{m+1}\right)$.

Corollary 1. (a) If $w \in[\sqrt{2}-1, \sqrt{2}+1] \backslash\{1\}$, then

$$
\operatorname{ext} B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)} \neq \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right) ;
$$

(b) If $w \in(0, \infty) \backslash[\sqrt{2}-1, \sqrt{2}+1]$, then

$$
\operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}=\operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)
$$

5 The exposed points of the unit balls of $\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ and $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$

Lemma 1. Let $f \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)^{*}$ for some $w>1$. Then, $\|f\|=w^{2}\|f\|_{\mathcal{L}\left(2 \mathbb{R}_{o\left(\frac{1}{w}\right)}^{2}\right.}$.
Proof. It follows that

$$
\begin{aligned}
\|f\| & =\sup _{T \in \operatorname{ext} B_{\mathcal{L}\left(2^{2} \mathbb{R}_{o w)}^{2}\right)}|f(T)|=\sup _{R \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(1 / w)}^{2}\right)}}\left|f\left(w^{2} R\right)\right|}=w^{2} \sup _{R \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}^{2} \mathbb{R}_{o(1 / w)}^{2}\right)}|f(R)|=w^{2}\|f\|_{\mathcal{L}\left(2 \mathbb{R}_{o(1 / w)}^{2}\right)} .} .
\end{aligned}
$$

Theorem 7. Let $f \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)^{*}$ be such that $\alpha=f\left(x_{1} x_{2}\right), \beta=f\left(y_{1} y_{2}\right), \gamma=$ $f\left(x_{1} y_{2}\right), \delta=f\left(x_{2} y_{1}\right)$.
(a) Let $w \leq \sqrt{2}-1$. Then,

$$
\begin{aligned}
\|f\|= & \max \left\{\left|\alpha \pm w^{2} \beta\right|+w|\gamma \pm \delta|,\left|w^{2} \alpha \pm \beta\right|+w|\gamma \pm \delta|,\right. \\
& w|\alpha \pm \beta|+\left|\gamma \pm w^{2} \delta\right|, w|\alpha \pm \beta|+\left|w^{2} \gamma \pm \delta\right|, \\
& \left|\alpha \pm\left(w^{2}+2 w\right) \beta\right|+w|\gamma \mp \delta|,\left|\beta \pm\left(w^{2}+2 w\right) \alpha\right|+w|\gamma \mp \delta|, \\
& w|\alpha \pm \beta|+\left|\gamma \mp\left(w^{2}+2 w\right) \delta\right|, w|\alpha \pm \beta|+\left|\delta \mp\left(w^{2}+2 w\right) \gamma\right|, \\
& \left.\frac{(1+w)^{2}}{2}|\alpha \pm \beta|+\frac{1-w^{2}}{2}|\gamma \mp \delta|, \frac{1-w^{2}}{2}|\alpha \pm \beta|+\frac{(1+w)^{2}}{2}|\gamma \mp \delta|\right\} .
\end{aligned}
$$

(b) Let $\sqrt{2}-1<w<1$. Then,

$$
\begin{aligned}
\|f\|= & \max \left\{\left|\alpha \pm w^{2} \beta\right|+w|\gamma \pm \delta|,\left|w^{2} \alpha \pm \beta\right|+w|\gamma \pm \delta|,\right. \\
& w|\alpha \pm \beta|+\left|\gamma \pm w^{2} \delta\right|, w|\alpha \pm \beta|+\left|w^{2} \gamma \pm \delta\right|, \\
& |\alpha \pm \beta|+\left|w \gamma \pm\left(w^{2}+w-1\right) \delta\right|,|\beta \pm \alpha|+\left|w \delta \pm\left(w^{2}+w-1\right) \gamma\right|, \\
& \left|w \alpha \pm\left(w^{2}+w-1\right) \beta\right|+|\gamma \pm \delta|,\left|w \beta \pm\left(w^{2}+w-1\right) \alpha\right|+|\gamma \pm \delta|, \\
& |\alpha \pm \beta|+w|\gamma \mp \delta|, w|\alpha \pm \beta|+|\gamma \mp \delta|\} .
\end{aligned}
$$

(c) Let $1<w<\sqrt{2}+1$. Then,

$$
\begin{aligned}
\|f\|= & \max \left\{\left|\alpha \pm w^{2} \beta\right|+w|\gamma \pm \delta|,\left|w^{2} \alpha \pm \beta\right|+w|\gamma \pm \delta|,\right. \\
& w|\alpha \pm \beta|+\left|\gamma \pm w^{2} \delta\right|, w|\alpha \pm \beta|+\left|w^{2} \gamma \pm \delta\right|, \\
& \left|w \alpha \pm\left(-w^{2}+w+1\right) \beta\right|+w^{2}|\gamma \pm \delta|,\left|w \beta \pm\left(-w^{2}+w+1\right) \alpha\right|+w^{2}|\gamma \pm \delta|, \\
& w^{2}|\alpha \pm \beta|+\left|w \gamma \pm\left(-w^{2}+w+1\right) \delta\right|, w^{2}|\alpha \pm \beta|+\left|w \delta \pm\left(-w^{2}+w+1\right) \gamma\right|, \\
& \left.w^{2}|\alpha \pm \beta|+w|\gamma \mp \delta|, w|\alpha \pm \beta|+w^{2}|\gamma \mp \delta|\right\} .
\end{aligned}
$$

(d) Let $\sqrt{2}+1 \leq w$. Then,

$$
\begin{aligned}
\|f\|= & \max \left\{\left|\alpha \pm w^{2} \beta\right|+w|\gamma \pm \delta|,\left|w^{2} \alpha \pm \beta\right|+w|\gamma \pm \delta|,\right. \\
& w|\alpha \pm \beta|+\left|\gamma \pm w^{2} \delta\right|, w|\alpha \pm \beta|+\left|w^{2} \gamma \pm \delta\right|, \\
& \left|w^{2} \alpha \pm(1+2 w) \beta\right|+w|\gamma \mp \delta|,\left|w^{2} \beta \pm(1+2 w) \alpha\right|+w|\gamma \mp \delta|, \\
& w|\alpha \pm \beta|+\left|w^{2} \gamma \mp(1+2 w) \delta\right|, w|\alpha \pm \beta|+\left|w^{2} \delta \mp(1+2 w) \gamma\right|, \\
& \left.\frac{(1+w)^{2}}{2}|\alpha \pm \beta|+\frac{w^{2}-1}{2}|\gamma \mp \delta|, \frac{w^{2}-1}{2}|\alpha \pm \beta|+\frac{(1+w)^{2}}{2}|\gamma \mp \delta|\right\} .
\end{aligned}
$$

Proof. (a) and (b). It follows from Theorems 4, 5 and the fact that

$$
\|f\|=\sup _{T \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}}|f(T)| .
$$

(c) and (d). It follows from Lemma 1, (a) and (b).

Theorem 8. Let $T=(a, b, c, d) \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$. Then the following are equivalent:
(a) $T \in \exp B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$;
(b) $(-a,-b,-c,-d) \in \exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$;
(c) $(a, b,-c,-d) \in \exp B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$;
(d) $(a,-b, c,-d) \in \exp B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$;
(e) $(a,-b,-c, d) \in \exp B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$;
(f) $(b, a, c, d) \in \exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$;
(g) $(d, c, a, b) \in \exp B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$.

Proof. It follows from the arguments in the proof of Theorem 4.
Theorem 9. ([22]) Let E be a real Banach space such that ext B_{E} is finite. Suppose that $x \in \operatorname{ext} B_{E}$ satisfies that there exists an $f \in E^{*}$ with $f(x)=1=\|f\|$ and $|f(y)|<1$ for every $y \in \operatorname{ext} B_{E} \backslash\{ \pm x\}$. Then $x \in \exp B_{E}$.

Theorem 10. The equality $\exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}=\operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ holds.

Proof. First, suppose that $0<w<1$.
Claim 1. $T=\left(1, w^{2}, w, w\right) \in \exp B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ for $0<w<1$.
Let $f \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)^{*}$ be such that $\alpha=1-\frac{w^{2}+4 w}{3 n}, \beta=\frac{1}{3 n}, \gamma=\delta=\frac{2}{3 n}$, where $n \in \mathbb{N}$ is big such that $\|f\|=1$. By Theorem $7,1=\|f\|=f(T)$ and $|f(S)|<1$ for every $S \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} \backslash\{ \pm T\}$. By Theorem $9, T \in \exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$. Hence, by Theorem $8,\left(w, w, 1, w^{2}\right) \in \exp B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ for $0<w<1$.

Claim 2. $T=\left(1, w^{2}+2 w, w,-w\right) \in \exp B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)}$ for $w \leq \sqrt{2}-1$.
Let $f \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)^{*}$ be such that $\alpha=1-\frac{w^{2}+4 w}{2 n}, \beta=\frac{1}{2 n}, \gamma=-\delta=\frac{1}{n}$, where $n \in \mathbb{N}$ is big such that $\|f\|=1$. By Theorem $7,1=\|f\|=f(T)$ and $|f(S)|<1$ for every $\left.S \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}\right)\{ \pm T\}$. By Theorem $9, T \in \exp B_{\mathcal{L}\left(\mathbb{R}^{2}{ }_{o(w)}^{2}\right)}$. Hence, by Theorem $8,\left(w,-w, 1, w^{2}+2 w\right) \in \exp B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $w \leq \sqrt{2}-1$

Claim 3. $T=\left(1,1, w, w^{2}+w-1\right) \in \exp B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1<w<1$.
Let $f \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)^{*}$ be such that $\alpha=\beta=\frac{1}{2}\left(1-\frac{1}{n}\right), \gamma=\frac{2}{n\left(w^{2}+3 w-1\right)}, \delta=$ $\frac{1}{n\left(w^{2}+3 w-1\right)}$, where $n \in \mathbb{N}$ is big such that $\|f\|=1$. By Theorem $7,1=\|f\|=$ $f(T)$ and $|f(S)|<1$ for every $S \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)} \backslash\{ \pm T\}$. By Theorem $9, T \in$ $\exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$. Hence, by Theorem $8, T=\left(w, w^{2}+w-1,1,1\right) \in \exp B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1<w<1$.

Claim 4. $T=\left(\frac{(1+w)^{2}}{2}, \frac{(1+w)^{2}}{2}, \frac{1-w^{2}}{2},-\frac{\left(1-w^{2}\right)}{2}\right) \in \exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $0<w \leq$ $\sqrt{2}-1$.

Let $f \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)^{*}$ be such that $\alpha=\beta=\frac{1}{(1+w)^{2}}\left(1-\frac{1}{n}\right), \gamma=\frac{1}{n\left(1-w^{2}\right)}=-\delta$, where $n \in \mathbb{N}$ is big such that $\|f\|=1$. By Theorem $7,1=\|f\|=f(T)$ and $|f(S)|<1$ for every $S \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} \backslash\{ \pm T\}$. By Theorem $9, T \in \exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$. Hence, by Theorem $8,\left(\frac{1-w^{2}}{2}, \frac{1-w^{2}}{2}, \frac{(1+w)^{2}}{2},-\frac{(1+w)^{2}}{2}\right) \in \exp B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ for $0<w \leq$ $\sqrt{2}-1$.

Claim 5. $T=(1,1, w, w) \in \exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1 \leq w<1$.
Let $f \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)^{*}$ be such that $\alpha=1-\frac{2}{n}, \beta=\frac{1}{n}, \gamma=\frac{1}{2 n w}=-\delta$, where $n \in \mathbb{N}$ is big such that $\|f\|=1$. By Theorem $7,1=\|f\|=f(T)$ and $|f(S)|<1$ for every $S \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} \backslash\{ \pm T\}$. By Theorem $9, T \in \exp B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$. Hence, by Theorem $8, T=(w, w, 1,-1) \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ for $\sqrt{2}-1 \leq w<1$. We have shown that if $0<w<1$, then $\exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}=\operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$.

Suppose that $1<w$.
It follows that

$$
\begin{aligned}
\exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} & \left.=\left\{w^{2} T: T \in \exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(1 / w)}^{2}\right)}\right\}=\left\{w^{2} T: T \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(1 / w)}^{2}\right.}\right)\right\} \\
& =\operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}
\end{aligned}
$$

Therefore, we complete the proof.
Theorem 11. The following equalities hold:
(a) $\exp B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}=\operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$;
(b) $\left.\exp B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)}\right)\left(\exp B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)\right)$

$$
=\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)} \backslash\left(\operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)\right)
$$

Proof. (a). Notice that $\left(\exp B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)\right) \subseteq \exp B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$ for all $0<w, w \neq 1$. By Theorems 4 and 10, it suffices to show that

$$
T=\left(1,1, \frac{w^{2}+2 w-1}{2}, \frac{w^{2}+2 w-1}{2}\right) \in \exp B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}
$$

for $\sqrt{2}-1<w<1$.
Let $f \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)^{*}$ be such that $\alpha=1-\frac{(1+w)^{2}}{2 n}, \beta=\frac{1}{n}, \gamma=\delta=\frac{1}{2 n}$, where $n \in \mathbb{N}$ is big such that $\|f\|=1$. By Theorem $7,1=\|f\|=f(T)$ and $|f(S)|<1$ for every $S \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)} \backslash\{ \pm T\}$. By Theorem 9, $T \in \exp B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$. Hence, $T \in \exp B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)}$.
(b) follows from (a) and Theorem 10.

6 The smooth points of the unit balls of $\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ and $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$

Theorem 12. Let $0<w<1$ and $T=(a, b, c, d) \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ be such that $\|T\|=1$. Then, $T \in \operatorname{sm} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$ if and only if there are $i_{1}, j_{1} \in\{1,2,3,4\}$ such that

$$
\left|T\left(X_{i_{1}}, X_{j_{1}}\right)\right|=1 \text { and }\left|T\left(X_{i}, X_{j}\right)\right|<1
$$

for every $i, j \in\{1,2,3,4\}$ with $(i, j) \neq\left(i_{1}, j_{1}\right)$, where $X_{1}=(1,0), X_{2}=(0,1), X_{3}=$ $\left((1+w)^{-1},(1+w)^{-1}\right), X_{4}=\left((1+w)^{-1},-(1+w)^{-1}\right)$.

Proof. (\Rightarrow). Assume the assertion is not true.
Suppose that $\left|T\left(X_{1}, X_{2}\right)\right|=1,\left|T\left(X_{3}, x_{4}\right)\right|=1$. Let $f_{1}=\operatorname{sign}\left(T\left(X_{1}, X_{2}\right)\right) \delta_{X_{1}, X_{2}}$ and $f_{2}=\operatorname{sign}\left(T\left(X_{3}, X_{4}\right)\right) \delta_{X_{3}, X_{4}}$ be elements of $\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)^{*}$, where $\delta_{X_{1}, X_{2}}(S)=$ $S\left(X_{1}, X_{2}\right)$ for $S \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$. Notice that

$$
f_{1} \neq f_{2},\left\|f_{j}\right\|=1=f_{j}(T) \text { for } j=1,2 .
$$

Hence, T is not a smooth point. This is a contradiction. Similarly, we conclude that the other cases reach a contradiction. Therefore, the assertion is true.
(\Leftarrow). Let $f \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)^{*}$ be such that $f(T)=1=\|f\|$. Let $\alpha=f\left(x_{1} y_{1}\right), \beta=$ $f\left(x_{2} y_{2}\right), \gamma=f\left(x_{1} y_{2}\right), \rho=f\left(x_{2} y_{1}\right)$.

Case 1. $\left|T\left(X_{1}, X_{1}\right)\right|=1$ and $\left|T\left(X_{i}, X_{j}\right)\right|<1$ for every $i, j \in\{1,2,3,4\}$ with $(i, j) \neq(1,1)$.

Without loss of generality, we may assume that $a=T\left(X_{1}, X_{1}\right)=1$. By Theorem 2, there is $N \in \mathbb{N}$ such that

$$
1=\left\|T \pm\left(0, \frac{1}{N}, 0,0\right)\right\|=\left\|T \pm\left(0,0, \frac{1}{N}, 0\right)\right\|=\left\|T \pm\left(0,0,0, \frac{1}{N}\right)\right\|
$$

We claim that $\alpha=1, \beta=\gamma=\rho=0$. It follows that

$$
\begin{aligned}
1 & \geq \max \left\{\left|f\left(T \pm\left(0, \frac{1}{N}, 0,0\right)\right)\right|,\left|f\left(T \pm\left(0,0, \frac{1}{N}, 0\right)\right)\right|,\left|f\left(T \pm\left(0,0,0, \frac{1}{N}\right)\right)\right|\right\} \\
& =\max \left\{1+\left|f\left(\left(0, \frac{1}{N}, 0,0\right)\right)\right|, 1+\left|f\left(\left(0,0, \frac{1}{N}, 0\right)\right)\right|, 1+\left|f\left(\left(0,0,0, \frac{1}{N}\right)\right)\right|\right\}
\end{aligned}
$$

which shows that

$$
0=f\left(\left(0, \frac{1}{N}, 0,0\right)\right)=f\left(\left(0,0, \frac{1}{N}, 0\right)\right)=f\left(\left(0,0,0, \frac{1}{N}\right)\right)
$$

Hence, $\beta=\gamma=\rho=0$. Since

$$
a=1=f(T)=a \alpha+b \beta+c \gamma+d \rho=a \alpha,
$$

$\alpha=1$. Hence, f is unique. Hence, $T \in \operatorname{sm} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$.
Case 2. $\left|T\left(X_{1}, X_{3}\right)\right|=1$ and $\left|T\left(X_{i}, X_{j}\right)\right|<1$ for every $i, j \in\{1,2,3,4\}$ with $(i, j) \neq(1,3)$.

Without loss of generality, we may assume that $\frac{1}{1+w}(a+c)=T\left(X_{1}, X_{3}\right)=1$. By Theorem 2, there is $N \in \mathbb{N}$ such that

$$
1=\left\|T \pm\left(\frac{1}{N}, 0,-\frac{1}{N}, 0\right)\right\|=\left\|T \pm\left(0, \frac{1}{N}, 0, \frac{1}{N}\right)\right\|=\left\|T \pm\left(0, \frac{1}{N}, 0,-\frac{1}{N}\right)\right\|
$$

We claim that $\alpha=\gamma=\frac{1}{1+w}, \beta=\rho=0$. It follows that

$$
\begin{aligned}
1 \geq & \max \left\{\left|f\left(T \pm\left(\frac{1}{N}, 0,-\frac{1}{N}, 0\right)\right)\right|,\left|f\left(T \pm\left(0, \frac{1}{N}, 0, \frac{1}{N}\right)\right)\right|\right. \\
& \left.\left|f\left(T \pm\left(0, \frac{1}{N}, 0,-\frac{1}{N}\right)\right)\right|\right\} \\
= & \max \left\{1+\left|f\left(\left(\frac{1}{N}, 0,-\frac{1}{N}, 0\right)\right)\right|, 1+\left|f\left(\left(0, \frac{1}{N}, 0, \frac{1}{N}\right)\right)\right|\right. \\
& \left.1+\left|f\left(\left(0, \frac{1}{N}, 0,-\frac{1}{N}\right)\right)\right|\right\}
\end{aligned}
$$

which shows that

$$
0=f\left(\left(\frac{1}{N}, 0,-\frac{1}{N}, 0\right)\right)=f\left(\left(0, \frac{1}{N}, 0, \frac{1}{N}\right)\right)=f\left(\left(0, \frac{1}{N}, 0,-\frac{1}{N}\right)\right) .
$$

Hence, $\alpha=\gamma, \beta=\rho=0$. Since

$$
\frac{1}{1+w}(a+c)=1=f(T)=\alpha(a+c),
$$

$\alpha=\gamma=\frac{1}{1+w}$. Hence, f is unique. Hence, $T \in \operatorname{sm} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$.
Case 3. $\left|T\left(X_{3}, X_{3}\right)\right|=1$ and $\left|T\left(X_{i}, X_{j}\right)\right|<1$ for every $i, j \in\{1,2,3,4\}$ with $(i, j) \neq(3,3)$.

Without loss of generality, we may assume that $\frac{1}{(1+w)^{2}}(a+b+c+d)=$ $T\left(X_{3}, X_{3}\right)=1$. By Theorem 2 , there is $N \in \mathbb{N}$ such that
$1=\left\|T \pm\left(\frac{1}{N},-\frac{1}{N}, \frac{1}{N},-\frac{1}{N}\right)\right\|=\left\|T \pm\left(\frac{1}{N}, \frac{1}{N},-\frac{1}{N},-\frac{1}{N}\right)\right\|=\left\|T \pm\left(\frac{1}{N}, 0,-\frac{1}{N}, 0\right)\right\|$.
We claim that $\alpha=\gamma=\beta=\rho=\frac{1}{(1+w)^{2}}$. It follows that

$$
\begin{aligned}
1 \geq & \max \left\{\left|f\left(T \pm\left(\frac{1}{N},-\frac{1}{N}, \frac{1}{N},-\frac{1}{N}\right)\right)\right|,\left|f\left(T \pm\left(\frac{1}{N}, \frac{1}{N},-\frac{1}{N},-\frac{1}{N}\right)\right)\right|\right. \\
& \left.\left|f\left(T \pm\left(\frac{1}{N}, 0,-\frac{1}{N}, 0\right)\right)\right|\right\} \\
= & \max \left\{1+\left|f\left(\left(\frac{1}{N},-\frac{1}{N}, \frac{1}{N},-\frac{1}{N}\right)\right)\right|, 1+\left|f\left(\left(\frac{1}{N}, \frac{1}{N},-\frac{1}{N},-\frac{1}{N}\right)\right)\right|\right. \\
& \left.1+\left|f\left(\left(\frac{1}{N}, 0,-\frac{1}{N}, 0\right)\right)\right|\right\}
\end{aligned}
$$

which shows that

$$
0=f\left(\left(\frac{1}{N},-\frac{1}{N}, \frac{1}{N},-\frac{1}{N}\right)\right)=f\left(\left(\frac{1}{N}, \frac{1}{N},-\frac{1}{N},-\frac{1}{N}\right)\right)=f\left(\left(\frac{1}{N}, 0,-\frac{1}{N}, 0\right)\right)
$$

Hence, $\alpha=\gamma=\beta=\rho$. Since

$$
\frac{1}{(1+w)^{2}}(a+b+c+d)=1=f(T)=\alpha(a+b+c+d)
$$

$\alpha=\gamma=\beta=\rho=\frac{1}{(1+w)^{2}}$. Hence, f is unique. Hence, $T \in \operatorname{sm} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$.
By analogous arguments in cases 1-3, in the other cases we may conclude that $T \in \operatorname{sm} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)}$. We omit the proofs. Therefore, we complete the proof.

Theorem 13. Let $w>1$ and $T=(a, b, c, d) \in \mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ be such that $\|T\|=1$. Then, $T \in \operatorname{sm} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$ if and only if there are $i_{1}, j_{1} \in\{1,2,3,4\}$ such that

$$
\left|T\left(Y_{i_{1}}, Y_{j_{1}}\right)\right|=1 \text { and }\left|T\left(Y_{i}, Y_{j}\right)\right|<1
$$

for every $i, j \in\{1,2,3,4\}$ with $(i, j) \neq\left(i_{1}, j_{1}\right)$, where $Y_{1}=\left(w^{-1}, 0\right), Y_{2}=\left(0, w^{-1}\right)$, $Y_{3}=\left((1+w)^{-1},(1+w)^{-1}\right), Y_{4}=\left((1+w)^{-1},-(1+w)^{-1}\right)$.
Proof. It follows from analogous arguments in the proof of Theorem 12.
Theorem 14. Let $0<w<1$ and $T=(a, b, c, c) \in \mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)$ be such that $\|T\|=1$. Then, $T \in \operatorname{sm} B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)}$ if and only if there are $i_{1}, j_{1} \in\{1,2,3,4\}$ such that

$$
\left|T\left(X_{i_{1}}, X_{j_{1}}\right)\right|=\left|T\left(X_{j_{1}}, X_{i_{1}}\right)\right|=1 \text { and }\left|T\left(X_{i}, X_{j}\right)\right|<1
$$

for every $i, j \in\{1,2,3,4\}$ with $(i, j) \neq\left(i_{1}, j_{1}\right),\left(j_{1}, i_{1}\right)$.

Proof. We follow analogous arguments in the proof of Theorem 12.
(\Rightarrow) follows by the same argument in the proof (\Rightarrow) of Theorem 12 .
(\Leftarrow). Let $g \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)^{*}$ be such that $g(T)=1=\|g\|$ and $\alpha=g\left(x_{1} x_{2}\right), \beta=$ $g\left(y_{1} y_{2}\right), \gamma=g\left(x_{1} y_{2}+x_{2} y_{1}\right)$.

Case 1. $\left|T\left(X_{1}, X_{1}\right)\right|=1$ and $\left|T\left(X_{i}, X_{j}\right)\right|<1$ for every $i, j \in\{1,2,3,4\}$ with $(i, j) \neq(1,1)$.

Without loss of generality, we may assume that $a=T\left(X_{1}, X_{1}\right)=1$. By Theorem 2, there is $N \in \mathbb{N}$ such that

$$
1=\left\|T \pm\left(0, \frac{1}{N}, 0,0\right)\right\|=\left\|T \pm\left(0,0, \frac{1}{N}, \frac{1}{N}\right)\right\| .
$$

We claim that $\alpha=1, \beta=\gamma=0$. It follows that

$$
\begin{aligned}
1 & \geq \max \left\{\left|g\left(T \pm\left(0, \frac{1}{N}, 0,0\right)\right)\right|,\left|g\left(T \pm\left(0,0, \frac{1}{N}, \frac{1}{N}\right)\right)\right|\right\} \\
& =\max \left\{1+\left|g\left(\left(0, \frac{1}{N}, 0,0\right)\right)\right|, 1+\left|g\left(\left(0,0, \frac{1}{N}, \frac{1}{N}\right)\right)\right|\right\}
\end{aligned}
$$

which shows that

$$
0=g\left(\left(0, \frac{1}{N}, 0,0\right)\right)=g\left(\left(0,0, \frac{1}{N}, \frac{1}{N}\right)\right)
$$

Hence, $\beta=\gamma=0$. Since

$$
a=1=g(T)=a \alpha+b \beta+c \gamma=a \alpha,
$$

$\alpha=1$. Hence, g is unique. Hence, $T \in \operatorname{sm} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$.
Case 2. $\left|T\left(X_{1}, X_{3}\right)\right|=1$ and $\left|T\left(X_{i}, X_{j}\right)\right|<1$ for every $i, j \in\{1,2,3,4\}$ with $(i, j) \neq(1,3)$.

Without loss of generality, we may assume that $\frac{1}{1+w}(a+c)=T\left(X_{1}, X_{3}\right)=1$. By Theorem 2, there is $N \in \mathbb{N}$ such that

$$
1=\left\|T \pm\left(-\frac{1}{N}, \frac{1}{N}, \frac{1}{N}, \frac{1}{N}\right)\right\|=\left\|T \pm\left(0, \frac{1}{N}, 0,0\right)\right\|
$$

We claim that $\alpha=\gamma=\frac{1}{1+w}, \beta=0$. It follows that

$$
\begin{aligned}
1 & \geq \max \left\{\left|g\left(T \pm\left(-\frac{1}{N}, \frac{1}{N}, \frac{1}{N}, \frac{1}{N}\right)\right)\right|,\left|g\left(T \pm\left(0, \frac{1}{N}, 0,0\right)\right)\right|\right\} \\
& =\max \left\{1+\left|g\left(\left(-\frac{1}{N}, \frac{1}{N}, \frac{1}{N}, \frac{1}{N}\right)\right)\right|, 1+\left|g\left(\left(0, \frac{1}{N}, 0,0\right)\right)\right|\right\}
\end{aligned}
$$

which shows that

$$
0=g\left(\left(-\frac{1}{N}, \frac{1}{N}, \frac{1}{N}, \frac{1}{N}\right)\right)=g\left(\left(0, \frac{1}{N}, 0,0\right)\right)
$$

Hence, $\alpha=\gamma, \beta=0$. Since

$$
\frac{1}{1+w}(a+c)=1=g(T)=\alpha(a+c)
$$

$\alpha=\gamma=\frac{1}{1+w}$. Hence, g is unique. Hence, $T \in \operatorname{sm} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)}$.
Case 3. $\left|T\left(X_{3}, X_{3}\right)\right|=1$ and $\left|T\left(X_{i}, X_{j}\right)\right|<1$ for every $i, j \in\{1,2,3,4\}$ with $(i, j) \neq(3,3)$.

Without loss of generality, we may assume that $\frac{1}{(1+w)^{2}}(a+b+2 c)=T\left(X_{3}, X_{3}\right)=$ 1. By Theorem 2, there is $N \in \mathbb{N}$ such that

$$
1=\left\|T \pm\left(\frac{2}{N}, 0,-\frac{1}{N},-\frac{1}{N}\right)\right\|=\left\|T \pm\left(-\frac{1}{N}, \frac{1}{N}, 0,0\right)\right\| .
$$

We claim that $\alpha=\beta=\frac{\gamma}{2}=\frac{1}{(1+w)^{2}}$. It follows that

$$
\begin{aligned}
1 & \geq \max \left\{\left|g\left(T \pm\left(\frac{2}{N}, 0,-\frac{1}{N},-\frac{1}{N}\right)\right)\right|,\left|g\left(T \pm\left(-\frac{1}{N}, \frac{1}{N}, 0,0\right)\right)\right|\right\} \\
& =\max \left\{1+\left|g\left(\left(\frac{2}{N}, 0,-\frac{1}{N},-\frac{1}{N}\right)\right)\right|, 1+\left|g\left(\left(-\frac{1}{N}, \frac{1}{N}, 0,0\right)\right)\right|\right\}
\end{aligned}
$$

which shows that

$$
0=g\left(\left(\frac{2}{N}, 0,-\frac{1}{N},-\frac{1}{N}\right)\right)=g\left(\left(-\frac{1}{N}, \frac{1}{N}, 0,0\right)\right)
$$

Hence, $\alpha=\beta=\frac{\gamma}{2}$. Since

$$
\frac{1}{(1+w)^{2}}(a+b+2 c)=1=g(T)=\alpha(a+b+2 c)
$$

$\alpha=\beta=\frac{\gamma}{2}=\frac{1}{(1+w)^{2}}$. Hence, g is unique. Hence, $T \in \operatorname{sm} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right.}$.
By analogous arguments in cases 1-3, in the other cases we may conclude that $T \in \operatorname{sm} B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)}$. We omit the proofs. Therefore, we complete the proof.

Theorem 15. Let $w>1$ and $T=(a, b, c, c) \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$ be such that $\|T\|=1$. Then, $T \in \operatorname{sm} B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)}$ if and only if there are $i_{1}, j_{1} \in\{1,2,3,4\}$ such that

$$
\left|T\left(Y_{i_{1}}, Y_{j_{1}}\right)\right|=\left|T\left(Y_{j_{1}}, Y_{i_{1}}\right)\right|=1 \text { and }\left|T\left(Y_{i}, Y_{j}\right)\right|<1
$$

for every $i, j \in\{1,2,3,4\}$ with $(i, j) \neq\left(i_{1}, j_{1}\right),\left(j_{1}, i_{1}\right)$.
Proof. It follows from analogous arguments in the proof of Theorem 14.
Theorem 16. Let $0<w, w \neq 1$.Then, $\operatorname{sm} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right) \subsetneq \operatorname{sm} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right)}$.
Proof. By Theorems $12-14, \operatorname{sm} B_{\mathcal{L}\left(2 \mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left(2^{2} \mathbb{R}_{o(w)}\right)$ is a subset of $\left.\operatorname{sm} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{o(w)}^{2}\right.}\right)$. Let $0<w<1$. Let $T_{0} \in \operatorname{sm} B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)}$ be such that

$$
\left|T_{0}\left(X_{1}, X_{2}\right)\right|=1 \text { and }\left|T_{0}\left(X_{i}, X_{j}\right)\right|<1
$$

for every $i, j \in\{1,2,3,4\}$ with $(i, j) \neq(1,2)$. Since $\left|T_{0}\left(X_{2}, X_{1}\right)\right|=1$, by Theorem 4.1, $T_{0} \notin \operatorname{sm} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{o(w)}^{2}\right)$. If $w>1$, we may choose $T_{1} \in \operatorname{sm} B_{\mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)}$ such that $T_{1} \notin \operatorname{sm} B_{\mathcal{L}\left(\mathbb{R}_{o(w)}^{2}\right)} \cap \mathcal{L}_{s}\left(\mathbb{R}_{o(w)}^{2}\right)$. We complete the proof.

References

[1] Aron. R.M. and Klimek, M., Supremum norms for quadratic polynomials, Arch. Math. (Basel) 76 (2001), 73-80.
[2] Cavalcante, W.V., Pellegrino, D.M. and Teixeira, E.V., Geometry of multilinear forms, Commun. Contemp. Math. 22 (2020), no. 2, 1950011.
[3] Choi, Y.S., Ki, H. and Kim, S.G., Extreme polynomials and multilinear forms on l_{1}, J. Math. Anal. Appl. 228 (1998), 467-482.
[4] Choi, Y.S., Ki, H. and Kim, S.G., The unit ball of $\mathcal{P}\left({ }^{2} l_{2}^{2}\right)$, Arch. Math. (Basel) 71 (1998), 472-480.
[5] Choi, Y.S., Ki, H. and Kim, S.G., Extreme polynomials on c_{0}, Indian J. Pure Appl. Math. 29 (1998), 983-989.
[6] Choi, Y.S., Ki, H. and Kim, S.G., Smooth points of the unit ball of the space $\mathcal{P}\left({ }^{2} l_{1}\right)$, Results Math. 36 (1999), 26-33.
[7] Choi, Y.S., Ki, H. and Kim, S.G., Exposed points of the unit balls of the spaces $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(p=1,2, \infty)$, Indian J. Pure Appl. Math. 35 (2004), 37-41.
[8] Dineen, S., Complex analysis on infinite dimensional spaces, Springer-Verlag, London, 1999.
[9] Gámez-Merino, J.L., Muñoz-Fernández, G.A., Sánchez, V.M. and SeoaneSepúlveda, J.B., Inequalities for polynomials on the unit square via the KreinMilman Theorem, J. Convex Anal. 20 (2013), no. 1, 125-142.
[10] Grecu, B.C., Geometry of three-homogeneous polynomials on real Hilbert spaces, J. Math. Anal. Appl. 246 (2000), 217-229.
[11] Grecu, B.C., Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math. (Basel) 76 (2001), no. 6, 445-454.
[12] Grecu, B.C., Geometry of 2-homogeneous polynomials on l_{p} spaces, $1<p<$ ∞, J. Math. Anal. Appl. 273 (2002), 262-282 .
[13] Grecu, B.C., Extreme 2-homogeneous polynomials on Hilbert spaces, Quaest. Math. 25 (2002), no. 4, 421-435.
[14] Grecu, B.C., Geometry of homogeneous polynomials on two- dimensional real Hilbert spaces, J. Math. Anal. Appl. 293 (2004), 578-588.
[15] Grecu, B.C., Muñoz-Fernández, G.A. and Seoane-Sepúlveda, J.B., The unit ball of the complex $P\left({ }^{3} H\right)$, Math. Z. 263 (2009), 775-785.
[16] Kim, S.G., Exposed 2-homogeneous polynomials on $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(1 \leq p \leq \infty)$, Math. Proc. R. Ir. Acad. 107 (2007), 123-129.
[17] Kim, S.G., The unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$, Extracta Math. 24 (2009), 17-29.
[18] Kim, S.G., The unit ball of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Math. Proc. R. Ir. Acad. 111 (2011), no. 2, 79-94.
[19] Kim, S.G., The unit ball of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 53 (2013), 295-306.
[20] Kim, S.G., Smooth polynomials of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Math. Proc. R. Ir. Acad. 113A (2013), no. 1, 45-58.
[21] Kim, S.G., Extreme bilinear forms of $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 53 (2013), 625-638.
[22] Kim, S.G., Exposed symmetric bilinear forms of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 54 (2014), 341-347.
[23] Kim, S.G., Polarization and unconditional constants of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Commun. Korean Math. Soc. 29 (2014), 421-428.
[24] Kim, S.G., Exposed bilinear forms of $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 55 (2015), 119-126.
[25] Kim, S.G., Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math. 13 (2016), 2827-2839.
[26] Kim, S.G., The unit ball of $\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$, Bull. Korean Math. Soc. 54 (2017), 417-428.
[27] S.G. Kim, Extremal problems for $\mathcal{L}_{s}\left({ }^{(} \mathbb{R}_{h(w)}^{2}\right)$, Kyungpook Math. J. 57 (2017), 223-232.
[28] Kim, S.G., The unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$, Comment. Math. (Prace Mat.) 57 (2017), 1-7.
[29] S.G. Kim, The geometry of $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$, Commun. Korean Math. Soc. 32 (2017), 991-997.
[30] Kim, S.G., Extreme 2-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants, Studia Sci. Math. Hungar. 54 (2017), 362-393.
[31] Kim, S.G., The geometry of $\mathcal{L}\left({ }^{3} l_{\infty}^{2}\right)$ and optimal constants in the BohnenblustHill inequality for multilinear forms and polynomials, Extracta Math. 33 (2018), no. 1, 51-66.
[32] Kim, S.G., Extreme bilinear forms on \mathbb{R}^{n} with the supremum norm, Period. Math. Hungar. 77 (2018), 274-290.
[33] Kim, S.G., Exposed polynomials of $\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$, Extracta Math. 33 (2018), no. 2, 127-143.
[34] S.G. Kim, The unit ball of the space of bilinear forms on \mathbb{R}^{3} with the supremum norm, Commun. Korean Math. Soc. 34 (2019), 487-494.
[35] Kim, S.G., Smooth points of $\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)$, Bull. Korean Math. Soc. 57 (2020), no. 2, 443-447.
[36] Kim, S.G., Extreme points of the space $\mathcal{L}\left({ }^{2} l_{\infty}\right)$, Commun. Korean Math. Soc. 35 (2020), no. 3, 799-807.
[37] Kim, S.G., Extreme points, exposed points and smooth points of the space $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$, Kyungpook Math. J. 60 (2020), 485-505.
[38] Kim, S.G., The unit balls of $\mathcal{L}\left({ }^{n} l_{\infty}^{m}\right)$ and $\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{m}\right)$, Studia Sci. Math. Hungar. 57 (2020), no. 3, 267-283.
[39] S.G. Kim, Extreme and exposed points of $\mathcal{L}\left({ }^{n} l_{\infty}^{2}\right)$ and $\mathcal{L} s\left({ }^{n} l_{\infty}^{2}\right)$, Extracta Math. 35 (2020), no. 2, 127-135.
[40] Kim, S.G., Smooth points of $\mathcal{L}\left({ }^{n} l_{\infty}^{m}\right)$ and $\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{m}\right)$, Comment. Math. (Prace Mat.) 60-61 (2020-2021), no. 1-2. in press.
[41] Kim, S.G., Extreme and exposed symmetric bilinear forms on the space $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$, Carpathian Math. Publ. 12 (2020), no. 2, 340-352.
[42] Kim, S.G., Geometry of multilinear forms on \mathbb{R}^{m} with a certain norm, Acta Sci. Math. (Szeged) 87 (2021), no. 1-2, in press.
[43] Kim, S.G. and Lee, S.H., Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131 (2003), 449-453.
[44] Konheim, A.G. and Rivlin, T.J., Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly 73 (1966), 505-507.
[45] Krein, M.G. and Milman, D.P., On extreme points of regular convex sets, Studia Math. 9 (1940), 133-137.
[46] Milev, L. and Naidenov, N., Strictly definite extreme points of the unit ball in a polynomial space, C. R. Acad. Bulg. Sci. 61 (2008), 1393-1400.
[47] Milev, L. and Naidenov, N., Semidefinite extreme points of the unit ball in a polynomial space, J. Math. Anal. Appl. 405 (2013), 631-641.
[48] Muñoz-Fernández, G.A., Pellegrino, D., Seoane-Sepúlveda, J.B., and Weber, A., Supremum norms for 2-homogeneous polynomials on circle sectors, J. Convex Anal. 21 (2014), no. 3, 745-764.
[49] Muñoz-Fernández, G.A., Révész, S.G. and Seoane-Sepúlveda, J.B., Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand. 105 (2009), 147-160.
[50] Muñoz-Fernández, G.A. and Seoane-Sepúlveda, J.B., Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2008), 1069-1087.
[51] Neuwirth, S., The maximum modulus of a trigonometric trinomial, J. Anal. Math. 104 (2008), 371-396.
[52] Ryan, R.A. and Turett, B., Geometry of spaces of polynomials, J. Math. Anal. Appl. 221 (1998), 698-711.

[^0]: ${ }^{1}$ Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea, e-mail: sgk317@knu.ac.kr

