Bulletin of the *Transilvania* University of Braşov Series III: Mathematics and Computer Science, Vol. 1(63), No. 1 - 2021, 161-190 https://doi.org/10.31926/but.mif.2021.1.63.1.12

GEOMETRY OF BILINEAR FORMS ON THE PLANE WITH THE OCTAGONAL NORM

Sung Guen KIM¹

Abstract

Let $\mathbb{R}^2_{o(w)}$ be the plane with the octagonal norm with weight $0 < w, w \neq 1$

$$\|(x,y)\|_{o(w)} = \max\Big\{|x| + w|y|, |y| + w|x|\Big\}.$$

In this paper we classify all extreme, exposed and smooth points of the closed unit balls of $\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})$ and $\mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{o(w)})$, where $\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})$ is the space of bilinear forms on $\mathbb{R}^{2}_{o(w)}$, and $\mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{o(w)})$ is the subspace of $\mathcal{L}({}^{2}l^{2}_{\infty,\theta})$ consisting of symmetric bilinear forms.

2000 Mathematics Subject Classification: 46A22 Key words: extreme points, exposed points, smooth points

1 Introduction

Throughout the paper, we let $n, m \in \mathbb{N}, n, m \geq 2$. We write B_E for the closed unit ball of a real Banach space E and the dual space of E is denoted by E^* . An element $x \in B_E$ is called an *extreme point* of B_E if $y, z \in B_E$ with $x = \frac{1}{2}(y+z)$ implies x = y = z. An element $x \in B_E$ is called an *exposed point* of B_E if there is $f \in E^*$ so that f(x) = 1 = ||f|| and f(y) < 1 for every $y \in B_E \setminus \{x\}$. It is easy to see that every exposed point of B_E is an extreme point. An element $x \in B_E$ is called a *smooth point* of B_E if there is unique $f \in E^*$ so that f(x) = 1 = ||f||. We denote by ext B_E , exp B_E and sm B_E the set of extreme points, the set of exposed points and the set of smooth points of B_E , respectively. A mapping $P : E \to \mathbb{R}$ is a continuous *n*-homogeneous polynomial if there exists a continuous *n*-linear form T on the product $E \times \cdots \times E$ such that $P(x) = T(x, \cdots, x)$ for every $x \in E$. We denote by $\mathcal{P}(^n E)$ the Banach space of all continuous *n*-homogeneous polynomials from E into \mathbb{R} endowed with the norm $||P|| = \sup_{||x||=1} ||P(x)|$. We denote by

¹Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea, e-mail: sgk317@knu.ac.kr

 $\mathcal{L}(^{n}E)$ the Banach space of all continuous *n*-linear forms on *E* endowed with the norm $||T|| = \sup_{||x_{k}||=1} |T(x_{1}, \dots, x_{n})|$. $\mathcal{L}_{s}(^{n}E)$ denote the closed subspace of all continuous symmetric *n*-linear forms on *E*. Notice that $\mathcal{L}(^{n}E)$ is identified with the dual of *n*-fold projective tensor product $\hat{\bigotimes}_{\pi,n} E$. With this identification, the action of a continuous *n*-linear form *T* as a bounded linear functional on $\hat{\bigotimes}_{\pi,n} E$ is given by

$$\Big\langle \sum_{i=1}^k x^{(1),i} \otimes \cdots \otimes x^{(n),i}, T \Big\rangle = \sum_{i=1}^k T\Big(x^{(1),i}, \cdots, x^{(n),i}\Big).$$

Notice also that $\mathcal{L}_s({}^nE)$ is identified with the dual of *n*-fold symmetric projective tensor product $\hat{\bigotimes}_{s,\pi,n}E$. With this identification, the action of a continuous symmetric *n*-linear form *T* as a bounded linear functional on $\hat{\bigotimes}_{s,\pi,n}E$ is given by

$$\Big\langle \sum_{i=1}^k \frac{1}{n!} \Big(\sum_{\sigma} x^{\sigma(1),i} \otimes \cdots \otimes x^{\sigma(n),i} \Big), \ T \Big\rangle = \sum_{i=1}^k T \Big(x^{(1),i}, \cdots, x^{(n),i} \Big),$$

where σ goes over all permutations on $\{1, \ldots, n\}$. For more details about the theory of polynomials and multilinear mappings on Banach spaces, we refer to [8].

Let us sketch the history of classification problems of the extreme points and the exposed points of the unit ball of continuous *n*-homogeneous polynomials on a Banach space.

We let $l_p^n = \mathbb{R}^n$ for every $1 \le p \le \infty$ equipped with the l_p -norm. Choi et al. ([3]–[5]) initiated and classified ext $B_{\mathcal{P}(2l_p^2)}$ for p = 1, 2. Choi and Kim [7] classified exp $B_{\mathcal{P}(2l_p^2)}$ for $p = 1, 2, \infty$. Grecu [12] classified ext $B_{\mathcal{P}(2l_p^2)}$ for 1 or <math>2 . Kim et al. [35] showed that if <math>E is a separable real Hilbert space with $\dim(E) \ge 2$, then, ext $B_{\mathcal{P}(^2E)} = \exp B_{\mathcal{P}(^2E)}$. Kim [16] classified exp $B_{\mathcal{P}(2l_p^2)}$ for $1 \le p \le \infty$. Kim ([18], [20]) characterized ext $B_{\mathcal{P}(^2d_*(1,w)^2)}$, where $d_*(1,w)^2 = \mathbb{R}^2$ with an octagonal norm $\|(x,y)\|_w = \max\left\{|x|,|y|,\frac{|x|+|y|}{1+w}\right\}$ for 0 < w < 1. Kim [25] classified exp $B_{\mathcal{P}(^2d_*(1,w)^2)}$ and showed that exp $B_{\mathcal{P}(^2d_*(1,w)^2)} \ne \exp B_{\mathcal{P}(^2d_*(1,w)^2)}$. Recently, Kim ([30], [33]) classified ext $B_{\mathcal{P}(^2\mathbb{R}^2_{h(\frac{1}{2})})}$ and exp $B_{\mathcal{P}(^2\mathbb{R}^2_{h(\frac{1}{2})})}$, where $\mathbb{R}^2_{h(\frac{1}{2})} = \mathbb{R}^2$ with $\mathbb{R}^2_{h(\frac{1}{2})} = \mathbb{R}^2$ with $\mathbb{R}^2_{h(\frac{1}{2})}$.

 \mathbb{R}^2 with a hexagonal norm $\|(x,y)\|_{h(\frac{1}{2})} = \max\left\{|y|, |x| + \frac{1}{2}|y|\right\}.$

Parallel to the classification problems of $\operatorname{ext} B_{\mathcal{P}(^{n}E)}$ and $\operatorname{exp} B_{\mathcal{P}(^{n}E)}$, it seems to be very natural to study the classification problems of the extreme points and the exposed points of the unit ball of continuous (symmetric) multilinear forms on a Banach space.

Kim [17] initiated and classified ext $B_{\mathcal{L}_s(^2l_{\infty}^2)}$ and $\exp B_{\mathcal{L}_s(^2l_{\infty}^2)}$. It was shown that ext $B_{\mathcal{L}_s(^2l_{\infty}^2)} = \exp B_{\mathcal{L}_s(^2l_{\infty}^2)}$.

Kim ([19], [21], [22], [24]) classified ext $B_{\mathcal{L}_s(^2d_*(1,w)^2)}$, ext $B_{\mathcal{L}(^2d_*(1,w)^2)}$, exp $B_{\mathcal{L}_s(^2d_*(1,w)^2)}$, and exp $B_{\mathcal{L}(^2d_*(1,w)^2)}$. Kim ([28], [29]) also classified ext $B_{\mathcal{L}_s(^2l_{\infty})}$ and exp $B_{\mathcal{L}_s(^3l_{\infty}^2)}$. It was shown that ext $B_{\mathcal{L}_s(^2l_{\infty}^2)} = \exp B_{\mathcal{L}_s(^2l_{\infty}^2)}$ and ext $B_{\mathcal{L}_s(^3l_{\infty}^2)} = \exp B_{\mathcal{L}_s(^3l_{\infty}^2)}$. Kim [32] characterized ext $B_{\mathcal{L}(^2l_{\infty}^2)}$ and ext $B_{\mathcal{L}_s(^2l_{\infty}^2)}$, and showed that
$$\begin{split} &\exp B_{\mathcal{L}(^{2}l_{\infty}^{n})} = \exp B_{\mathcal{L}(^{2}l_{\infty}^{n})} \text{ and } \exp B_{\mathcal{L}_{s}(^{2}l_{\infty}^{n})} = \exp B_{\mathcal{L}_{s}(^{2}l_{\infty}^{n})}. \text{ Kim [34] characterized} \\ &\exp B_{\mathcal{L}(^{2}l_{\infty}^{n})} \text{ and } \exp B_{\mathcal{L}(^{2}l_{\infty}^{n})}. \text{ Kim [35] characterized } \operatorname{sm} B_{\mathcal{L}_{s}(^{n}l_{\infty}^{2})}. \text{ Kim [36] studied} \\ &\operatorname{ied} \operatorname{ext} B_{\mathcal{L}(^{2}l_{\infty})}. \text{ Cavalcante et al. [2] characterized } \operatorname{ext} B_{\mathcal{L}(^{n}l_{\infty}^{m})}. \text{ Recently, Kim [37]} \\ &\operatorname{classified} \operatorname{ext} B_{\mathcal{L}(^{n}l_{\infty}^{2})} \text{ and } \operatorname{ext} B_{\mathcal{L}_{s}(^{n}l_{\infty}^{2})}. \text{ It was shown that } |\operatorname{ext} B_{\mathcal{L}(^{n}l_{\infty}^{2})}| = 2^{(2^{n})} \text{ and} \\ &|\operatorname{ext} B_{\mathcal{L}_{s}(^{n}l_{\infty}^{2})}| = 2^{n+1}, \text{ and that } \exp B_{\mathcal{L}(^{n}l_{\infty}^{2})} = \operatorname{ext} B_{\mathcal{L}(^{n}l_{\infty}^{2})} \text{ and } \exp B_{\mathcal{L}_{s}(^{n}l_{\infty}^{2})} = \\ &\operatorname{ext} B_{\mathcal{L}_{s}(^{n}l_{\infty}^{2})}. \text{ We refer to } ([1]-[7], \quad [9]-[52] \text{ and references therein}) \text{ for some recent work about extremal properties of homogeneous polynomials and multilinear forms on Banach spaces.} \end{split}$$

Let $\mathbb{R}^2_{o(w)}$ denote \mathbb{R}^2 with the octagonal norm with weight $0 < w, w \neq 1$

$$||(x,y)||_{o(w)} = \max\Big\{|x| + w|y|, |y| + w|x|\Big\}.$$

Let $\mathcal{F} = \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})$ or $\mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{o(w)})$. First we present formulae for the norm of $T \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})$. Using these formulae, we classify the extreme points of the unit ball of \mathcal{F} . We show that

$$\exp B_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)})} \neq \exp B_{\mathcal{L}(^{2}\mathbb{R}^{2}_{o(w)})} \cap \mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)}) \text{ for } w \in [\sqrt{2}-1, \sqrt{2}+1] \setminus \{1\}, \\ \exp B_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)})} = \exp B_{\mathcal{L}(^{2}\mathbb{R}^{2}_{o(w)})} \cap \mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)}) \text{ for } w \in (0,\infty) \setminus [\sqrt{2}-1, \sqrt{2}+1].$$

We present formulae for the norm of $f \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})^{*}$. Using these formulae, we show that every extreme point is exposed in this space. We show that

$$\exp B_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)})} \neq \exp B_{\mathcal{L}(^{2}\mathbb{R}^{2}_{o(w)})} \cap \mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)}) \text{ for } w \in [\sqrt{2}-1, \sqrt{2}+1] \setminus \{1\},\\ \exp B_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)})} = \exp B_{\mathcal{L}(^{2}\mathbb{R}^{2}_{o(w)})} \cap \mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)}) \text{ for } w \in (0,\infty) \setminus [\sqrt{2}-1, \sqrt{2}+1].$$

We classify the smooth points of the unit balls of the spaces of symmetric bilinear forms and bilinear forms on $\mathbb{R}^2_{o(w)}$, respectively.

We show that sm $B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})} \bigcap \mathcal{L}_s(^2\mathbb{R}^2_{o(w)})$ is a proper subset of sm $B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})}$.

2 Computation of the norm of bilinear forms of $\mathcal{L}({}^2\mathbb{R}^2_{o(w)})$

Let $\mathbb{R}^2_{o(w)}$ denote \mathbb{R}^2 with the octagonal norm with weight $0 < w, w \neq 1$

$$||(x,y)||_{o(w)} = \max\left\{|x| + w|y|, |y| + w|x|\right\}.$$

Notice that

$$||(x,y)||_{o(w)} = ||(y,x)||_{o(w)} = ||(x,-y)||_{o(w)}$$
 for $(x,y) \in \mathbb{R}^2_{o(w)}$.

Notice that if 0 < w < 1, then

$$\operatorname{ext} B_{\mathbb{R}^2_{o(w)}} = \Big\{ \pm (1,0), \pm ((1+w)^{-1}, \pm (1+w)^{-1}), \pm (0,1) \Big\},\$$

Sung Guen Kim

and that if w > 1, then

$$\operatorname{ext} B_{\mathbb{R}^2_{o(w)}} = \left\{ \pm (w^{-1}, 0), \pm ((1+w)^{-1}, \pm (1+w)^{-1}), \pm (0, w^{-1}) \right\}$$

Let $T \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})$ be such that $T = ax_{1}x_{2} + by_{1}y_{2} + cx_{1}y_{2} + dx_{2}y_{1}$. For simplicity, we will denote T by (a, b, c, d).

Theorem 1. Let $0 < w, w \neq 1$ and $T((x_1, y_1), (x_2, y_2)) = ax_1x_2 + by_1y_2 + cx_1y_2 + dx_2y_1 \in \mathcal{L}({}^2\mathbb{R}^2_{o(w)})$. Then there exists (unique) $T'((x_1, y_1), (x_2, y_2)) = a^*x_1x_2 + b^*y_1y_2 + c^*x_1y_2 + d^*x_2y_1 \in \mathcal{L}({}^2\mathbb{R}^2_{o(w)})$ such that $a^*, b^*, c^*, d^* \in \{\pm a, \pm b, \pm c, \pm d\}$ with $a^* \geq b^* \geq 0, c^* \geq |d^*|$ and ||T|| = ||T'|| and that T is extreme (exposed, respectively) if and only if T' is extreme (exposed, respectively).

Proof. If a < 0, taking -T, we assume $a \ge 0$.

Case 1.
$$|b| > a$$

Let $T'_1((x_1, y_1), (x_2, y_2)) := T((y_1, sign(b)x_1), (y_2, x_2))$
 $= |b|x_1x_2 + |a|y_1y_2 + sign(b)dx_1y_2 + cx_2y_1.$

Then $||T_1'|| = ||T||$ and T is extreme if and only if T_1' is extreme. If $sign(b)d \ge |c|$, then the bilinear form T_1' satisfies the condition of the theorem. Suppose that sign(b)d < |c|.

Subcase 1.
$$c \ge 0$$

If $sign(b)d = |d|$ or $(sign(b)d = -|d|, |d| \le |c|)$,
let $T'_2((x_1, y_1), (x_2, y_2)) := T'_1((x_2, y_2), (x_1, y_1))$
 $= |b|x_1x_2 + |a|y_1y_2 + |c|x_1y_2 + sign(b)dx_2y_1$.

Then $||T'_2|| = ||T||$ and T is extreme (exposed, respectively) if and only if T'_2 is extreme (exposed, respectively). Hence, the bilinear form T'_2 satisfies the condition of the theorem. If sign(b)d = -|d|, |d| > |c|,

Then $||T'_2|| = ||T||$ and T is extreme (exposed, respectively) if and only if T'_2 is extreme (exposed, respectively). Hence, the bilinear form T'_2 satisfies the condition of the theorem.

Subcase 2.
$$c < 0$$

Let $T'_3((x_1, y_1), (x_2, y_2)) := T'_1((-x_1, y_1), (-x_2, y_2))$
 $= |b|x_1x_2 + |a|y_1y_2 - sign(b)dx_1y_2 + |c|x_2y_1.$

Applying Subcase 1 to T'_3 , we can find a bilinear form T' which satisfies the condition of the theorem.

Case 2.
$$|b| \le a$$

Let $T'_4((x_1, y_1), (x_2, y_2)) := T((x_1, y_1), (x_2, sign(b)y_2))$
 $= ax_1x_2 + |b|y_1y_2 + sign(b)cx_1y_2 + dx_2y_1.$

Applying Case 1 to T'_4 , we can find a bilinear form T' which satisfies the condition of the theorem.

Theorem 2. Let $0 < w, w \neq 1$ and $T \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})$ be such that $T((x_{1}, y_{1}), (x_{2}, y_{2})) = ax_{1}x_{2} + by_{1}y_{2} + cx_{1}y_{2} + dx_{2}y_{1} = (a, b, c, d)$ for some $a, b, c, d \in \mathbb{R}$. Then: (a) If 0 < w < 1, then

$$\begin{aligned} \|T\| &= \max \Big\{ |a|, |b|, |c|, |d|, (1+w)^{-1} (|a|+|c|), (1+w)^{-1} (|a|+|d|), \\ &(1+w)^{-1} (|b|+|c|), (1+w)^{-1} (|b|+|d|), (1+w)^{-2} (|a-b|+|c-d|), \\ &(1+w)^{-2} (|a+b|+|c+d|) \Big\} \end{aligned}$$

(b) If 1 < w, then

$$\begin{aligned} \|T\| &= \max\left\{w^{-2}|a|, w^{-2}|b|, w^{-2}|c|, w^{-2}|d|, (w(1+w))^{-1}(|a|+|c|), \\ &(w(1+w))^{-1}(|a|+|d|), (w(1+w))^{-1}(|b|+|c|), \\ &(w(1+w))^{-1}(|b|+|d|), (1+w)^{-2}(|a-b|+|c-d|), \\ &(1+w)^{-2}(|a+b|+|c+d|)\right\}. \end{aligned}$$

Proof. (a). Let 0 < w < 1. Notice that

ext
$$B_{\mathbb{R}^2_{o(w)}} = \left\{ \pm (1,0), \pm ((1+w)^{-1}, \pm (1+w)^{-1}), \pm (0,1) \right\}.$$

By the bilinearity of T, we have

$$\begin{split} \|T\| \\ &= \sup \left\{ |T((x_1, y_1), (x_2, y_2))| : (x_j, y_j) \in \operatorname{ext} B_{\mathbb{R}^2_{o(w)}} \text{ for } j = 1, 2 \right\} \\ &= \max \left\{ |T((1, 0), (1, 0))|, |T((0, 1), (0, 1))|, |T((1, 0), (0, 1))|, |T((0, 1), (1, 0))|, |T((1, 0), \pm((1 + w)^{-1}, \pm(1 + w)^{-1}))|, |T(\pm((1 + w)^{-1}, \pm(1 + w)^{-1}), (1, 0))|, |T((0, 1), \pm((1 + w)^{-1}, \pm(1 + w)^{-1}))|, |T(\pm((1 + w)^{-1}, \pm(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}), (0, 1))|, |T(\pm((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1})|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, (1 + w)^{-1}))|, |T(((1 + w)^{-1}, (-1 + w)^{-1}), ((1 + w)^{-1}, (-1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T(((1 + w)^{-1}, -(1 + w)^{-1}), ((1 + w)^{-1}, -(1 + w)^{-1}))|, |T((1 + w)^{-1}, -(1 + w)^{-1})|, |T((1 + w)^{-1}, -(1$$

(b). Let w > 1.

Claim.
$$||T||_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})} = \left\| w^{-2}T \right\|_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(1/w)})}.$$

Notice that

$$\|(w^{-1}x, w^{-1}y)\|_{o(w)} = \|(x, y)\|_{o(1/w)}$$

for $(x, y) \in \mathbb{R}^2$. It follows that

$$\begin{split} & \left\| w^{-2}T \right\|_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(1/w)})} \\ &= \sup_{\|(x_{j},y_{j})\|_{o(1/w)}=1, \ j=1,2} \left| w^{-2}ax_{1}x_{2} + w^{-2}by_{1}y_{2} + w^{-2}cx_{1}y_{2} + w^{-2}dx_{2}y_{1} \\ &= \sup_{\|(w^{-1}x_{j},w^{-1}y_{j})\|_{o(w)}=1, \ j=1,2} \left| a(w^{-1}x_{1})(w^{-1}x_{2}) + w^{-2}b(w^{-1}y_{1})(w^{-1}y_{2}) \right. \\ &+ \left. w^{-2}c(w^{-1}x_{1})(w^{-1}y_{2}) + w^{-2}d(w^{-1}x_{2})(w^{-1}y_{1}) \right| \\ &= \left\| T \right\|_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}. \end{split}$$

By (a), we have

$$\begin{split} \|T\|_{\mathcal{L}(2\mathbb{R}^2_{o(w)})} &= \left\| (w^{-2}a, w^{-2}b, w^{-2}c, w^{-2}d) \right\|_{\mathcal{L}(2\mathbb{R}^2_{o(1/w)})} \\ &= \max \left\{ w^{-2}|a|, w^{-2}|b|, w^{-2}|c|, w^{-2}|d|, (1+w^{-1})^{-1}(w^{-2}|a|+w^{-2}|c|), \\ &(1+w^{-1})^{-1}(w^{-2}|a|+w^{-2}|d|), (1+w^{-1})^{-1}(w^{-2}|b|+w^{-2}|c|), \\ &(1+w^{-1})^{-1}(w^{-2}|b|+w^{-2}|d|), (1+w^{-1})^{-2}(w^{-2}|a-b|+w^{-2}|c-d|), \\ &(1+w^{-1})^{-2}(w^{-2}|a+b|+w^{-2}|c+d|) \right\} \\ &= \left\{ w^{-2}|a|, w^{-2}|b|, w^{-2}|c|, w^{-2}|d|, (w(1+w))^{-1}(|a|+|c|), \\ &(w(1+w))^{-1}(|a|+|d|), (w(1+w))^{-1}(|b|+|c|), \\ &(w(1+w))^{-1}(|b|+|d|), (1+w)^{-2}(|a-b|+|c-d|), \\ &(1+w)^{-2}(|a+b|+|c+d|) \right\}. \end{split}$$

3 The extreme points of the unit ball of $\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})$

Let $0 < w, w \neq 1$ and $T \in \mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})$ be such that $T = ax_1x_2 + by_1y_2 + c(x_1y_2 + x_2y_1)$. For simplicity, we will denote T by (a, b, c).

Theorem 3. (a) If $0 < w \le \sqrt{2} - 1$, then

$$\begin{aligned} \exp B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})} &= \left\{ \pm (1, w^2, \pm w), \pm (w^2, 1, \pm w), \pm (1, -(w^2 + 2w), \pm w), \\ \pm (-(w^2 + 2w), 1, \pm w), \pm \left(\frac{(1+w)^2}{2}, -\frac{(1+w)^2}{2}, \pm \frac{1-w^2}{2}\right) \\ \pm \left(\frac{1-w^2}{2}, -\frac{(1-w^2)}{2}, \pm \frac{(1+w)^2}{2}\right) \right\}. \end{aligned}$$

(b) If $\sqrt{2} - 1 < w < 1$, then,

(c) If $1 < w < \sqrt{2} + 1$, then,

$$\begin{aligned} \operatorname{ext} B_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)})} &= \left\{ \pm (1, w^{2}, \pm w), \pm (w^{2}, 1, \pm w), \pm (w, w^{2} + w - 1, \pm 1), \\ \pm (w^{2} + w - 1, w, \pm 1), \pm \left(1, 1, \frac{\pm (w^{2} + 2w - 1)}{2}\right), \\ \pm \left(\frac{w^{2} + 2w - 1}{2}, \frac{w^{2} + 2w - 1}{2}, \pm 1\right), \pm (1, -1, \pm w), \\ \pm (w, -w, \pm 1) \right\}. \end{aligned}$$

 $\begin{aligned} \text{ext} \ B_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)})} &= \left\{ \pm (w^{2}, 1, \pm w), \pm (1, w^{2}, \pm w), \pm (w, -w^{2} + w + 1, \pm w^{2}), \\ \pm (-w^{2} + w + 1, w, \pm w^{2}), \pm \left(w^{2}, w^{2}, \frac{\pm (-w^{2} + 2w + 1)}{2}\right), \\ \pm \left(\frac{-(w^{2} + 2w - 1)}{2}, \frac{-(w^{2} + 2w - 1)}{2}, \pm w^{2}\right), \\ \pm (w^{2}, -w^{2}, \pm w), \pm (w, -w, \pm w^{2}) \right\}. \end{aligned}$

(d) If $\sqrt{2} + 1 < w$, then,

$$\begin{aligned} \operatorname{ext} B_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)})} &= \left\{ \pm (w^{2}, 1, \pm w), \pm (1, w^{2}, \pm w), \pm (w^{2}, -(1+2w), \pm w), \\ \pm (-(1+2w), w^{2}, \pm w), \pm \left(\frac{(1+w)^{2}}{2}, -\frac{(1+w)^{2}}{2}, \pm \frac{w^{2}-1}{2}\right) \\ \pm \left(\frac{w^{2}-1}{2}, -\frac{(w^{2}-1)}{2}, \pm \frac{(1+w)^{2}}{2}\right) \right\}. \end{aligned}$$

Proof. Let $T \in \text{ext} B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})}$ be such that T = (a, b, c). By Theorem 1, we may assume that $a \ge |b|$ and $c \ge 0$. Suppose that 0 < w < 1.

- Case 1. $b \ge 0$
- Subcase 1. b = a

Suppose that a = b = 1. By Theorem 2(a), $c \le w$. If c = w, then T = (1, 1, w), which is a contradiction because ||T|| = 1. Hence, c < w. Since $T \in \text{ext } B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})}$,

we have $\frac{1}{(1+w)^2}(a+b+2c) = 1$, which shows that $T = \left(1, 1, \frac{w^2+2w-1}{2}\right)$ for $\sqrt{2}-1 \le w < 1$.

Claim 1.
$$T = \left(1, 1, \frac{w^2 + 2w - 1}{2}\right) \in \operatorname{ext} B_{\mathcal{L}_s(2\mathbb{R}^2_{o(w)})} \text{ for } \sqrt{2} - 1 \le w < 1.$$

Let

$$T^{\pm} = \left(1, 1, \frac{w^2 + 2w - 1}{2} \pm \gamma\right)$$

be such that $1 = ||T^{\pm}||$ for some $\gamma \in \mathbb{R}$. By Theorem 2(a), we have

$$\frac{(1+w)^2 \pm 2\gamma}{(1+w)^2} \le 1,$$

hence, $\gamma = 0$.

Suppose that a = b < 1. If c < 1, since $T \in \operatorname{ext} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})}$, we have $\frac{1}{1+w}(a + c) = \frac{1}{(1+w)^2}(a+b+2c) = 1$, which shows that $w^2 = 1$, which is a contradiction. Hence, c = 1. Since $T \in \operatorname{ext} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})}$, we have $\frac{1}{1+w}(a+c) = 1$ or $\frac{1}{1+w}(a+c) = \frac{1}{(1+w)^2}(a+b+2c) = 1$. If $\frac{1}{1+w}(a+c) = 1$, then T = (w,w,1), which is a contradiction because ||T|| = 1. If $\frac{1}{1+w}(a+c) = \frac{1}{(1+w)^2}(a+b+2c) = 1$, then $T = (w,w^2+w-1,1)$, which is impossible because a = b.

Subcase 2: b < a

Suppose that a = 1. By Theorem 2(a), $c \le w$. If c = w, then $\frac{1}{(1+w)^2}(a+b+2c) = 1$, hence, $T = (1, w^2, w)$ for 0 < w < 1.

Claim 2. $T = (1, w^2, w) \in \text{ext} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})}$ for 0 < w < 1.

Let

$$T^{\pm} = (1, w^2 \pm \delta, w \pm \gamma)$$

be such that $1 = ||T^{\pm}||$ for some $\delta, \gamma \in \mathbb{R}$. By Theorem 2(a), we have

$$\frac{1}{1+w}(1+w\pm\delta) \le 1, \frac{1}{(1+w)^2}((1+w)^2\pm(\delta+2\gamma)) \le 1,$$

hence, $\delta = \gamma = 0$. If c < w, then $\frac{1}{(1+w)^2}(a+b+2c) = 1$. Let

$$T^{\pm} = (a, b \pm \frac{2}{n}, c \mp \frac{1}{n})$$

so that $1 = ||T^{\pm}||$ for some big $n \in \mathbb{N}$, which shows that T is not extreme. It is a contradiction.

Suppose that a < 1. If c < 1, then $1 = \frac{1}{1+w}(a+c)$ or $1 = \frac{1}{(1+w)^2}(a+b+2c)$, which is a contradiction because $T \in \operatorname{ext} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})}$. Hence, c = 1. Since $T \in \operatorname{ext} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})}$, we have $\frac{1}{1+w}(a+c) = \frac{1}{(1+w)^2}(a+b+2c) = 1$, then $T = (w, w^2 + w - 1, 1)$ for $\frac{\sqrt{5}-1}{2} \le w < 1$.

Claim 3.
$$T = (w, w^2 + w - 1, 1) \in \text{ext } B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})} \text{ for } \frac{\sqrt{5}-1}{2} \le w < 1.$$

Let

$$T^{\pm} = (w \pm \epsilon, w^2 + w - 1 \pm \delta, 1)$$

be such that $1 = ||T^{\pm}||$ for some $\epsilon, \delta \in \mathbb{R}$. By Theorem 2(a), we have

$$1 = \frac{1}{1+w}(1+w\pm\epsilon) \le 1, \frac{1}{(1+w)^2}((1+w)^2\pm(\epsilon+\delta)) \le 1,$$

hence, $\epsilon = \delta = 0$.

Case 2: b < 0

Subcase 1: |b| = a

Suppose that a = |b| = 1. By Theorem 2(a), $c \le w$. If c = w, then T = (1, -1, w) for $\sqrt{2} - 1 \le w < 1$.

Claim 4. $T = (1, -1, w) \in \text{ext} B_{\mathcal{L}_s(2\mathbb{R}^2_{a(w)})}$ for $\sqrt{2} - 1 \le w < 1$.

Let

$$T^{\pm} = (1, -1, w \pm \gamma)$$

be such that $1 = ||T^{\pm}||$ for some $\gamma \in \mathbb{R}$. By Theorem 2(a), we have

$$\frac{1}{1+w}(1+w\pm\gamma) \le 1,$$

hence, $\gamma = 0$.

If c < w, then $\frac{1}{(1+w)^2}(a-b) = 1$, hence, T = (1, -1, c) for $0 \le c < w = \sqrt{2} - 1$, which is a contradiction because $T \in \operatorname{ext} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(\sqrt{2}-1)})}$.

Suppose that a = |b| < 1. Suppose that c < 1. Note that if $\frac{1}{1+w}(a+c) < 1$, then $\frac{1}{(1+w)^2}(a-b) = 1$ or $\frac{1}{(1+w)^2}(a+b+2c) = 1$, which is a contradiction because $T \in \operatorname{ext} B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})}$. Hence, $\frac{1}{1+w}(a+c) = 1$. If $\frac{1}{(1+w)^2}(a-b) = 1$, then $T = \left(\frac{(1+w)^2}{2}, -\frac{(1+w)^2}{2}, \frac{1-w^2}{2}\right)$ for $0 < w \le \sqrt{2} - 1$. Claim 5. $T = \left(\frac{(1+w)^2}{2}, -\frac{(1+w)^2}{2}, \frac{1-w^2}{2}\right) \in \operatorname{ext} B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})}$ for $0 < w \le \sqrt{2} - 1$. Let

$$T^{\pm} = \left(\frac{(1+w)^2}{2} \pm \epsilon, -\frac{(1+w)^2}{2} \pm \delta, \frac{1-w^2}{2} \pm \gamma\right)$$

be such that $1 = ||T^{\pm}||$ for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Since

$$\left|T^{\pm}\left((1,0), \left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \le 1 \ (j=1,2),$$

we have $\epsilon + \gamma = 0$. Since

$$\left|T^{\pm}\left((0,1), \left(\frac{1}{1+w}, -\frac{1}{1+w}\right)\right)\right| \le 1 \ (j=1,2),$$

we have $-\delta + \gamma = 0$. Since

$$\left|T^{\pm}\left(\left(\frac{1}{1+w},\frac{1}{1+w}\right),\left(\frac{1}{1+w},-\frac{1}{1+w}\right)\right)\right| \le 1 \ (j=1,2),$$

we have $\epsilon - \delta = 0$. Hence, $\epsilon = \delta = \gamma = 0$.

$$\begin{aligned} &\text{fave } \epsilon - b = 0. \text{ Hence, } \epsilon = b = \gamma = 0. \\ &\text{If } \frac{1}{(1+w)^2}(a+b+2c) = 1, \text{ then } T = \left(\frac{1-w^2}{2}, -\frac{(1-w^2)}{2}, \frac{(1+w)^2}{2}\right) \text{ for } 0 < w \le \sqrt{2} - 1. \\ &\text{Claim } 6. \ T = \left(\frac{1-w^2}{2}, -\frac{(1-w^2)}{2}, \frac{(1+w)^2}{2}\right) \in \text{ext } B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})} \text{ for } 0 < w \le \sqrt{2} - 1. \end{aligned}$$

Let

$$T^{\pm} = \left(\frac{1-w^2}{2} \pm \epsilon, -\frac{(1-w^2)}{2} \pm \delta, \frac{(1+w)^2}{2} \pm \gamma\right)$$

be such that $1 = ||T^{\pm}||$ for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Since

$$\left|T^{\pm}\left((1,0), \left(\frac{1}{1+w}, -\frac{1}{1+w}\right)\right)\right| \le 1 \ (j=1,2),$$

we have $\epsilon - \gamma = 0$. Since

$$\left|T^{\pm}\left((0,1), \left(\frac{1}{1+w}, -\frac{1}{1+w}\right)\right)\right| \le 1 \ (j=1,2),$$

we have $-\delta + \gamma = 0$. Since

$$\left|T^{\pm}\left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right), \left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right)\right| \le 1 \ (j=1,2),$$

we have $\epsilon + \delta + 2\gamma = 0$. Hence, $\epsilon = \delta = \gamma = 0$.

Suppose that c = 1. By Theorem 2(a), $a \le w$. If a = w, then T = (w, -w, 1) $\sqrt{2} - 1 \le w < 1$.

Claim 7. $T = (w, -w, 1) \in \text{ext} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})}$ for $\sqrt{2} - 1 \le w < 1$

Let

$$T^{\pm} = (w \pm \epsilon, -w \pm \delta, 1)$$

be such that $1 = ||T^{\pm}||$ for some $\epsilon, \delta \in \mathbb{R}$. By Theorem 2(a), we have

$$\frac{1}{1+w}(1+w\pm\epsilon) \le 1, \frac{1}{1+w}(1+|-w\pm\delta|) \le 1,$$

hence, $\epsilon = \delta = 0$.

Subcase 2. |b| < a

Suppose that a = 1. By Theorem 2(a), $c \le w$. If c = w, then $\frac{1}{(1+w)^2}(a-b) = 1$, hence, $T = (1, -(2w + w^2), w)$ for $0 < w \le \sqrt{2} - 1$.

Claim 8.
$$T = (1, -(w^2 + 2w), w) \in ext B_{\mathcal{L}_s(2\mathbb{R}^2_{o(w)})}$$
 for $0 < w \le \sqrt{2} - 1$.

Let

$$T^{\pm} = (1, -(w^2 + 2w) \pm \delta, w \pm \gamma)$$

be such that $1 = ||T^{\pm}||$ for some $\delta, \gamma \in \mathbb{R}$. By Theorem 2(a), we have

$$\frac{1}{1+w}(1+w\pm\gamma) \le 1, \frac{1}{(1+w)^2}((1+w)^2\pm\delta) \le 1,$$

hence, $\delta = \gamma = 0$.

If c < w, then $\frac{1}{(1+w)^2}(a-b) \le 1$ and $\frac{1}{(1+w)^2}(a+b+2c) < 1$, which is a contradiction because $T \in \operatorname{ext} B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})}$. Suppose that a < 1. Suppose that c = 1. By Theorem 2(a), $a \le w$. If a < w, then $\frac{1}{(1+w)^2}(a-b) < 1$ and $\frac{1}{(1+w)^2}(a+b+2c) = 1$, which is a contradiction because $T \in \operatorname{ext} B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})}$. Hence, a = w and $\frac{1}{(1+w)^2}(a+b+2c) = 1$, for $\sqrt{2}-1 < w < \frac{\sqrt{5}-1}{2}$.

Claim 9.
$$T = (w, w^2 + w - 1, 1) \in \text{ext } B_{\mathcal{L}_s(2\mathbb{R}^2_{o(w)})} \text{ for } \sqrt{2} - 1 < w < \frac{\sqrt{5}-1}{2}$$

Let

$$T^{\pm} = (w \pm \epsilon, w^2 + w - 1 \pm \delta, 1)$$

be such that $1 = ||T^{\pm}||$ for some $\epsilon, \delta \in \mathbb{R}$. By Theorem 2(a), we have

$$1 = \frac{1}{1+w}(1+w\pm\epsilon) \le 1, \frac{1}{(1+w)^2}((1+w)^2\pm(\epsilon+\delta)) \le 1,$$

hence, $\epsilon = \delta = 0$. If c < 1, then $\frac{1}{1+w}(a+c) = \frac{1}{(1+w)^2}(a-b) = \frac{1}{(1+w)^2}(a+b+2c) = 1$, which is a contradiction.

Suppose that 1 < w. By the claim in the proof (b) of Theorem 2,

$$\operatorname{ext} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})} = \Big\{ w^2 T : T \in \operatorname{ext} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(1/w)})} \Big\}.$$

By (a) and (b) in the case of 0 < w < 1, (c) and (d) follow. Therefore, we complete the proof.

4 The extreme points of the unit ball of $\mathcal{L}({}^2\mathbb{R}^2_{o(w)})$

Theorem 4. Let $T((x_1, y_1), (x_2, y_2)) = ax_1x_2 + by_1y_2 + cx_1y_2 + dx_2y_1 = (a, b, c, d) \in \mathcal{L}({}^2\mathbb{R}^2_{o(w)})$. Then the following are equivalent:

 $\begin{array}{l} (a) \ T \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}; \\ (b) \ (-a, -b, -c, -d) \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}; \\ (c) \ (a, b, -c, -d) \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}; \\ (d) \ (a, -b, c, -d) \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}; \\ (e) \ (a, -b, -c, d) \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}; \\ (f) \ (b, a, c, d) \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}; \\ (g) \ (d, c, a, b) \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}. \end{array}$

Proof. Notice that

$$\begin{array}{rcl} (-a,-b,-c,-d) &=& T((x_1,y_1),\;(-x_2,-y_2)),\\ (a,b,-c,-d) &=& T((x_1,-y_1),\;(x_2,-y_2)),\\ (a,-b,c,-d) &=& T((x_1,-y_1),\;(x_2,y_2)),\\ (a,-b,-c,d) &=& T((x_1,y_1),\;(x_2,-y_2)),\\ (b,a,c,d) &=& T((y_2,x_2),\;(y_1,x_1)),\\ (d,c,a,b) &=& T((y_2,x_2),\;(x_1,y_1)), \end{array}$$

and that

$$\|(x_j, y_j)\|_{o(w)} = \|(y_j, x_j)\|_{o(w)} = \|(x_j, -y_j)\|_{o(w)}$$

for $(x_j, y_j) \in \mathbb{R}^2$ and j = 1, 2. We complete the proof.

For
$$T \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})$$
, we let
Norm (T)
= $\left\{ ((x_{1}, y_{1}), (x_{2}, y_{2})) \in \operatorname{ext} B_{\mathbb{R}^{2}_{o(w)}} \times \operatorname{ext} B_{\mathbb{R}^{2}_{o(w)}} : |T((x_{1}, y_{1}), (x_{2}, y_{2}))| = ||T|| \right\}.$

We call Norm(T) the norming set of T. By Theorems 2 and 4, it suffices to consider only $T = (a, b, c, d) \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})$ with $a \ge b \ge 0$ and $c \ge |d|$ in order to classify the extreme points of $B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$.

Theorem 5. Let $0 < w, w \neq 1$ and $T \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})$ be such that $T = ax_{1}x_{2} + by_{1}y_{2} + cx_{1}y_{2} + dx_{2}y_{1}$ with $a \geq b \geq 0$ and $c \geq |d|$. Then: (a) Let $0 < w \leq \sqrt{2} - 1$. Then, $T \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$ if and only if

$$T \in \left\{ (1, w^2, w, w), (w, w, 1, w^2), (1, w^2 + 2w, w, -w), \\ \left(w, w, 1, -(w^2 + 2w) \right), \left(\frac{(1+w)^2}{2}, \frac{(1+w)^2}{2}, \frac{1-w^2}{2}, -(\frac{1-w^2}{2}) \right), \\ \left(\frac{1-w^2}{2}, \frac{1-w^2}{2}, \frac{(1+w)^2}{2}, -\frac{(1+w)^2}{2} \right) \right\}.$$

(b) Let $\sqrt{2} - 1 < w \leq \frac{\sqrt{5}-1}{2}$. Then, $T \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}$ if and only if

$$T \in \left\{ (1, w^2, w, w), (w, w, 1, w^2), (1, 1, w, w^2 + w - 1), (w, -(w^2 + w - 1), 1, -1), (1, 1, w, -w), (w, w, 1, -1) \right\}.$$

(c) Let $\frac{\sqrt{5}-1}{2} < w < 1$. Then, $T \in \text{ext } B_{\mathcal{L}(2\mathbb{R}^2_{o(w)})}$ if and only if $T \ \in \ \Big\{(1,w^2,w,w),(w,w,1,w^2),(1,1,w,w^2+w-1),$ $(w, w^2 + w - 1, 1, 1), (1, 1, w, -w), (w, w, 1, -1) \Big\}.$

$$\begin{array}{ll} (d) \ Let \ 1 < w \leq \frac{\sqrt{5}+1}{2}. \ Then, \ T \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})} \ if \ and \ only \ if \\ T & \in & \Big\{ (w^2, 1, w, w), (w, w, w^2, 1), (w, -w^2 + w + 1, w^2, w^2), \\ & (w^2, w^2, w, -w^2 + w + 1), (w^2, w^2, w, -w), (w, w, w^2, -w^2) \Big\}. \end{array}$$

(e) Let $\frac{\sqrt{5}+1}{2} < w \le \sqrt{2}+1$. Then, $T \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$ if and only if

$$T \in \left\{ (w^2, 1, w, w), (w, w, w^2, 1), (w, -(-w^2 + w + 1), w^2, -w^2), \\ (w^2, w^2, w, -w^2 + w + 1), (w^2, w^2, w, -w), (w, w, w^2, -w^2) \right\}.$$

(f) Let $\sqrt{2} + 1 < w$ Then, $T \in \text{ext } B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}$ if and only if

$$T \in \left\{ (w^2, 1, w, w), (w, w, w^2, 1), (w^2, 1 + 2w, w, -w), \\ \left(w, w, w^2, -(1+2w) \right), \left(\frac{(1+w)^2}{2}, \frac{(1+w)^2}{2}, \frac{w^2 - 1}{2}, -(\frac{w^2 - 1}{2}) \right), \\ \left(\frac{w^2 - 1}{2}, \frac{w^2 - 1}{2}, \frac{(1+w)^2}{2}, -\frac{(1+w)^2}{2} \right) \right\}.$$

Proof. Suppose that 0 < w < 1.

Case 1. c = |d|.

First, suppose that c = d.

Since $T \in \text{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$, we have $T \in \text{ext} B_{\mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{o(w)})}$. By Theorem 3, we have

$$\begin{array}{ll} T &=& (1,w^2,w,w) \; (0 < w < 1), \\ && \left(1,1,\frac{w^2+2w-1}{2},\frac{w^2+2w-1}{2}\right) \; (\sqrt{2}-1 \le w < 1), \\ && (w,-(w^2+w-1),1,-1) \; (\sqrt{2}-1 < w \le \frac{\sqrt{5}-1}{2}) \; {\rm or} \\ && (w,w^2+w-1,1,1) \; (\frac{\sqrt{5}-1}{2} < w < 1). \end{array}$$

 $Claim \ 1. \ T = (1, w^2, w, w) \in \operatorname{ext} B_{\mathcal{L}(^2 \mathbb{R}^2_{o(w)})} \ \text{for} \ 0 < w < 1.$

Note that

Norm(T) =
$$\left\{ \left((1,0), (1,0) \right), \left((1,0), \left(\frac{1}{1+w}, \frac{1}{1+w} \right) \right), \left(\left(\frac{1}{1+w}, \frac{1}{1+w} \right), (1,0) \right), \left(\left(\frac{1}{1+w}, \frac{1}{1+w} \right), \left(\frac{1}{1+w}, \frac{1}{1+w} \right) \right) \right\}.$$

Let

$$T^{\pm} = (1 \pm \epsilon, w^2 \pm \delta, w \pm \gamma, w \pm \rho)$$

be such that $||T^{\pm}|| = 1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since

$$\begin{aligned} |T^{\pm}((1,0),(1,0))| &\leq 1, \ \left|T^{\pm}\left((1,0),\left(\frac{1}{1+w},\frac{1}{1+w}\right)\right)\right| &\leq 1, \\ \left|T^{\pm}\left(\left(\frac{1}{1+w},\frac{1}{1+w}\right),(1,0)\right)\right| &\leq 1, \ \left|T^{\pm}\left(\left(\frac{1}{1+w},\frac{1}{1+w}\right),\left(\frac{1}{1+w},\frac{1}{1+w}\right)\right)\right| &\leq 1, \end{aligned}$$

we have $0 = \epsilon = \delta = \gamma = \rho$. By Theorem 4, $(w, w, 1, w^2) \in \operatorname{ext} B_{\mathcal{L}({}^2\mathbb{R}^2_{o(w)})}$ for 0 < w < 1.

Claim 2.
$$T = \left(1, 1, \frac{w^2 + 2w - 1}{2}, \frac{w^2 + 2w - 1}{2}\right) \notin \operatorname{ext} B_{\mathcal{L}(2\mathbb{R}^2_{o(w)})} \text{ for } \sqrt{2} - 1 \le w < 1.$$

Let $n \in \mathbb{N}$ be such that

$$\frac{w^2 + 2w - 1}{2} + \frac{1}{n} < w, \frac{2}{n(1+w)^2} < 1.$$

Let

$$T^{\pm} = \left(1, 1, \frac{w^2 + 2w - 1}{2} \pm \frac{1}{n}, \frac{w^2 + 2w - 1}{2} \mp \frac{1}{n}\right).$$

By Theorem 2(a), $||T^{\pm}|| = 1$, $T = \frac{1}{2}(T^{+} + T^{-})$. Since $T \neq T^{\pm}$, $T \notin \text{ext} B_{\mathcal{L}(^{2}\mathbb{R}^{2}_{o(w)})}$.

Claim 3.
$$T = (w, -(w^2 + w - 1), 1, -1) \in \operatorname{ext} B_{\mathcal{L}(^2 \mathbb{R}^2_{o(w)})} \text{ for } \sqrt{2} - 1 < w \le \frac{\sqrt{5} + 1}{2}$$

Note that

Norm(T) =
$$\left\{ ((1,0), (0,1)), ((0,1), (1,0)), ((1,0), (\frac{1}{1+w}, \frac{1}{1+w})) \right\}, \\ \left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right), (1,0) \right), \left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right), \left(\frac{1}{1+w}, \frac{1}{1+w}\right) \right) \right\}.$$

Let

$$T^{\pm} = (w \pm \epsilon, -(w^2 + w - 1) \pm \delta, 1 \pm \gamma, -1 \pm \rho)$$

be such that $||T^{\pm}|| = 1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since

$$\begin{aligned} |T^{\pm}((1,0),(0,1))| &\leq 1, \ |T^{\pm}((0,1),(1,0))| \leq 1, \\ \left|T^{\pm}\left((1,0),\left(\frac{1}{1+w},\frac{1}{1+w}\right)\right)\right| &\leq 1, \ \left|T^{\pm}\left(\left(\frac{1}{1+w},\frac{1}{1+w}\right),\left(\frac{1}{1+w},\frac{1}{1+w}\right)\right)\right| \leq 1, \end{aligned}$$

we have $0 = \epsilon = \delta = \gamma = \rho$.

Claim 4.
$$T = (w, w^2 + w - 1, 1, 1) \in \operatorname{ext} B_{\mathcal{L}({}^2\mathbb{R}^2_{o(w)})}$$
 for $\frac{\sqrt{5}+1}{2} < w < 1$.

Note that

Norm(T) =
$$\left\{ ((1,0), (0,1)), ((0,1), (1,0)), ((1,0), \left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right), \left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right), (1,0)\right), \left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right), \left(\frac{1}{1+w}, \frac{1}{1+w}\right)\right) \right\}$$

Let

$$T^{\pm} = (w \pm \epsilon, -(w^2 + w - 1) \pm \delta, 1 \pm \gamma, -1 \pm \rho)$$

be such that $||T^{\pm}|| = 1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since

$$\begin{aligned} |T^{\pm}((1,0),(0,1))| &\leq 1, \ |T^{\pm}((0,1),(1,0))| \leq 1, \\ \left|T^{\pm}\left((1,0),\left(\frac{1}{1+w},\frac{1}{1+w}\right)\right)\right| &\leq 1, \ \left|T^{\pm}\left(\left(\frac{1}{1+w},\frac{1}{1+w}\right),\left(\frac{1}{1+w},\frac{1}{1+w}\right)\right)\right| \leq 1, \end{aligned}$$

we have $0 = \epsilon = \delta = \gamma = \rho$. By Theorem 4, $(1, 1, w, w^2 + w - 1) \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}$ for $\sqrt{2} - 1 < w < 1$.

Suppose that c = -d. By Theorem 4, $S = (a, -b, c, c) \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$. Hence, $S \in \operatorname{ext} B_{\mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{o(w)})}$. By Theorem 3, we have

$$S = \left(\frac{(1+w)^2}{2}, -\frac{(1+w)^2}{2}, \frac{1-w^2}{2}, \frac{1-w^2}{2}\right) (0 < w \le \sqrt{2} - 1),$$

$$(1, -(w^2 + 2w), w, w) (0 < w \le \sqrt{2} - 1), (1, -1, w, w) (\sqrt{2} - 1 \le w < 1).$$

 $Claim \ 5. \ S = \left(\frac{(1+w)^2}{2}, -\frac{(1+w)^2}{2}, \frac{1-w^2}{2}, \frac{1-w^2}{2}\right) \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})} \ \text{for} \ 0 < w \leq \sqrt{2} - 1.$ Notice that

$$Norm(S) = \left\{ \left((1,0), \left(\frac{1}{1+w}, \frac{1}{1+w}\right) \right), \left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right), (1,0) \right), \\ \left((0,1), \left(\frac{1}{1+w}, -\frac{1}{1+w}\right) \right), \left(\left(\frac{1}{1+w}, -\frac{1}{1+w}\right), (0,1) \right), \\ \left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right), \left(\frac{1}{1+w}, -\frac{1}{1+w}\right) \right), \\ \left(\left(\frac{1}{1+w}, -\frac{1}{1+w}\right), \left(\frac{1}{1+w}, \frac{1}{1+w}\right) \right) \right\}.$$

Let

$$S^{\pm} = \left(\frac{(1+w)^2}{2} \pm \epsilon, -\frac{(1+w)^2}{2} \pm \delta, \frac{1-w^2}{2} \pm \gamma, \frac{1-w^2}{2} \pm \rho\right)$$

be such that $||S^{\pm}|| = 1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since

$$\left| S^{\pm} \left((1,0), \left(\frac{1}{1+w}, \frac{1}{1+w} \right) \right) \right| \le 1, \ \left| S^{\pm} \left(\left(\frac{1}{1+w}, \frac{1}{1+w} \right), (1,0) \right) \right| \le 1, \\ \left| S^{\pm} \left((0,1), \left(\frac{1}{1+w}, -\frac{1}{1+w} \right) \right) \right| \le 1, \ \left| S^{\pm} \left(\left(\frac{1}{1+w}, -\frac{1}{1+w} \right), (0,1) \right) \right| \le 1,$$

we have $0 = \epsilon = \delta = \gamma = \rho$.

Claim 6.
$$S = (1, -(w^2 + 2w), w, w) \in \text{ext} B_{\mathcal{L}(^2 \mathbb{R}^2_{o(w)})}$$
 for $0 < w \le \sqrt{2} - 1$.

Note that

Norm(S) =
$$\left\{ ((1,0), (1,0)), ((1,0), (\frac{1}{1+w}, \frac{1}{1+w})) \right\}, \\ \left(\left(\frac{1}{1+w}, -\frac{1}{1+w}\right), (1,0) \right), \left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right), \left(\frac{1}{1+w}, \frac{1}{1+w}\right) \right) \right\}.$$

Sung Guen Kim

Let

$$S^{\pm} = (1 \pm \epsilon, w^2 + 2w \pm \delta, w \pm \gamma, -w \pm \rho)$$

be such that $||S^{\pm}|| = 1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since

$$|S^{\pm}((1,0),(1,0))| \leq 1, \ \left|S^{\pm}\left((1,0),\left(\frac{1}{1+w},\frac{1}{1+w}\right)\right)\right| \leq 1, \\ \left|S^{\pm}\left(\left(\frac{1}{1+w},-\frac{1}{1+w}\right),(1,0)\right)\right| \leq 1, \ \left|S^{\pm}\left(\left(\frac{1}{1+w},\frac{1}{1+w}\right),\left(\frac{1}{1+w},\frac{1}{1+w}\right)\right)\right| \leq 1,$$

we have $0 = \epsilon = \delta = \gamma = \rho$.

By Theorem 4, $(w, w, 1, -(w^2 + 2w)) \in \text{ext } B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}$ for $0 < w \le \sqrt{2} - 1$.

Claim 7.
$$S = (1, -1, w, w) \in ext B_{\mathcal{L}(2\mathbb{R}^2_{o(w)})}$$
 for $\sqrt{2} - 1 \le w < 1$.

Note that

Norm(S) =
$$\left\{ ((1,0), (1,0)), ((0,1), (0,1)), ((1,0), (\frac{1}{1+w}, \frac{1}{1+w})) \right\}, \\ \left(\left(\frac{1}{1+w}, \frac{1}{1+w}\right), (1,0), ((0,1), (\frac{1}{1+w}, -\frac{1}{1+w}) \right) \\ \left(\left(\frac{1}{1+w}, -\frac{1}{1+w}\right), (0,1) \right) \right\}.$$

Let

$$S^{\pm} = (1 \pm \epsilon, -1 \pm \delta, w \pm \gamma, w \pm \rho)$$

be such that $||S^{\pm}|| = 1$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since

$$|S^{\pm}((1,0),(1,0))| \le 1, |S^{\pm}((0,1),(0,1))| \le 1, \\ \left|S^{\pm}\left((1,0),\left(\frac{1}{1+w},\frac{1}{1+w}\right)\right)\right| \le 1, \left|S^{\pm}\left(\left(\frac{1}{1+w},\frac{1}{1+w}\right),(1,0)\right)\right| \le 1,$$

we have $0 = \epsilon = \delta = \gamma = \rho$.

By Theorem 4,
$$(1, 1, w, -w)$$
, $(w, w, 1, -1) \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$ for $\sqrt{2}-1 \leq w < 1$

Case 2. c > |d|.

Suppose that a = 1. Note that

$$\begin{aligned} \|T\| &= 1 = \max\Big\{a, b, c, \frac{1}{(1+w)}(a+c), \frac{1}{(1+w)}(b+c), \\ &\frac{1}{(1+w)^2}(a-b+c-d), \frac{1}{(1+w)^2}(a+b+c+d)\Big\}. \end{aligned}$$

Hence, $c \leq w$. We claim that if a = 1, c < w, then T is not extreme. Without a loss of generality we may assume that b = 1. Then, $\frac{1}{(1+w)^2}(a-b+c-d) < 1$. Hence,

$$||T|| = 1 = \max\left\{a, b, \frac{1}{(1+w)^2}(a+b+c+d)\right\}.$$

Note that Norm(T) has at most 3 elements. Hence, T is not extreme, which is a contradiction. Hence, $a = b = 1, c = w, 1 = \frac{1}{(1+w)^2}(a+b+c+d)$. Therefore, $T = (1, 1, w, w^2 + w - 1)$ for $\sqrt{2} - 1 < w < 1$. Since $(w, w^2 + w - 1, 1, 1) \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}$ for $\sqrt{2} - 1 < w < 1$, by Theorem 4, $T \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}$ for $\sqrt{2} - 1 < w < 1$.

Suppose that a < 1.

Note that if c = 1, then a = w. Indeed, if a < w, then

$$||T|| = 1 = \max\left\{c, \frac{1}{(1+w)^2}(a-b+c-d), \frac{1}{(1+w)^2}(a+b+c+d)\right\},\$$

which shows that T is not extreme because Norm(T) has at most 3 elements. Hence, a = w, c = 1. If $0 \le b < w$, then $\frac{1}{(1+w)^2}(a-b+c-d) < 1$. Hence,

$$||T|| = 1 = \max\left\{c, \frac{1}{(1+w)}(a+c), \frac{1}{(1+w)^2}(a+b+c+d)\right\},\$$

which shows that T is not extreme because Norm(T) has at most 3 elements. Therefore, a = b = w, c = 1 and $T = (w, w, 1, w^2)$ for 0 < w < 1. Since $(1, w^2, w, w) \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}$ for 0 < w < 1, by Theorem 4, $T \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}$ for 0 < w < 1.

Suppose that 1 < w.

By the claim in the proof (b) of Theorem 2,

$$\operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})} = \Big\{ w^{2}T : T \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(1/w)})} \Big\}.$$

By (a), (b) and (c) in the case of 0 < w < 1, (d), (e) and (f) follow. Therefore, we complete the proof.

Notice that $(\operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})} \cap \mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{o(w)})) \subseteq \operatorname{ext} B_{\mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{o(w)})}$ for all $0 < w, w \neq 1$.

Theorem 6. (a) If $w \in [\sqrt{2} - 1, \sqrt{2} + 1] \setminus \{1\}$, then

$$\exp B_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)})} \setminus \left(\exp B_{\mathcal{L}(^{2}\mathbb{R}^{2}_{o(w)})} \cap \mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{o(w)}) \right)$$

$$= \left\{ \pm \left(1, 1, \pm \frac{w^{2} + 2w - 1}{2}, \pm \frac{w^{2} + 2w - 1}{2} \right), \\ \pm \left(\frac{w^{2} + 2w - 1}{2}, \frac{w^{2} + 2w - 1}{2}, \pm 1, \pm 1 \right) \right\}$$

(b) If $w \in (0,\infty) \setminus [\sqrt{2}-1,\sqrt{2}+1]$, then

$$\operatorname{ext} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})} \backslash (\operatorname{ext} B_{\mathcal{L}({}^2\mathbb{R}^2_{o(w)})} \cap \mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})) = \emptyset.$$

Proof. It follows from Claim 2 in the proof of Theorem 5.

 $\begin{array}{l} \text{Kim [38] showed that for } n,m \geq 2, \, \text{ext} \, B_{\mathcal{L}_s(^n l_\infty^2)} = \text{ext} \, B_{\mathcal{L}(^n l_\infty^2)} \cap \mathcal{L}_s(^n l_\infty^2) \text{ and} \\ \text{ext} \, B_{\mathcal{L}_s(^2 l_\infty^{m+1})} \neq \text{ext} \, B_{\mathcal{L}(^2 l_\infty^{m+1})} \cap \mathcal{L}_s(^2 l_\infty^{m+1}). \end{array}$

Corollary 1. (a) If $w \in [\sqrt{2} - 1, \sqrt{2} + 1] \setminus \{1\}$, then

$$\operatorname{ext} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})} \neq \operatorname{ext} B_{\mathcal{L}({}^2\mathbb{R}^2_{o(w)})} \cap \mathcal{L}_s({}^2\mathbb{R}^2_{o(w)});$$

(b) If $w \in (0,\infty) \setminus [\sqrt{2}-1,\sqrt{2}+1]$, then

$$\operatorname{ext} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})} = \operatorname{ext} B_{\mathcal{L}({}^2\mathbb{R}^2_{o(w)})} \cap \mathcal{L}_s({}^2\mathbb{R}^2_{o(w)}).$$

5 The exposed points of the unit balls of $\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})$ and $\mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{o(w)})$

Lemma 1. Let $f \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})^{*}$ for some w > 1. Then, $||f|| = w^{2}||f||_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(\frac{1}{w})})}$.

Proof. It follows that

$$\begin{split} \|f\| &= \sup_{T \in \text{ext} \, B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}} |f(T)| = \sup_{R \in \text{ext} \, B_{\mathcal{L}(^2\mathbb{R}^2_{o(1/w)})}} |f(w^2R)| \\ &= w^2 \sup_{R \in \text{ext} \, B_{\mathcal{L}(^2\mathbb{R}^2_{o(1/w)})}} |f(R)| = w^2 \|f\|_{\mathcal{L}(^2\mathbb{R}^2_{o(1/w)})}. \end{split}$$

Theorem 7. Let $f \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})^{*}$ be such that $\alpha = f(x_{1}x_{2}), \beta = f(y_{1}y_{2}), \gamma = f(x_{1}y_{2}), \delta = f(x_{2}y_{1}).$ (a) Let $w \leq \sqrt{2} - 1$. Then,

$$\begin{split} \|f\| &= \max\left\{ |\alpha \pm w^2\beta| + w|\gamma \pm \delta|, |w^2\alpha \pm \beta| + w|\gamma \pm \delta|, \\ &w|\alpha \pm \beta| + |\gamma \pm w^2\delta|, w|\alpha \pm \beta| + |w^2\gamma \pm \delta|, \\ &|\alpha \pm (w^2 + 2w)\beta| + w|\gamma \mp \delta|, |\beta \pm (w^2 + 2w)\alpha| + w|\gamma \mp \delta|, \\ &w|\alpha \pm \beta| + |\gamma \mp (w^2 + 2w)\delta|, w|\alpha \pm \beta| + |\delta \mp (w^2 + 2w)\gamma|, \\ &\frac{(1+w)^2}{2}|\alpha \pm \beta| + \frac{1-w^2}{2}|\gamma \mp \delta|, \frac{1-w^2}{2}|\alpha \pm \beta| + \frac{(1+w)^2}{2}|\gamma \mp \delta| \right\}. \end{split}$$

(b) Let $\sqrt{2} - 1 < w < 1$. Then,

$$\begin{split} \|f\| &= \max \left\{ |\alpha \pm w^2 \beta| + w | \gamma \pm \delta|, |w^2 \alpha \pm \beta| + w | \gamma \pm \delta|, \\ & w | \alpha \pm \beta| + |\gamma \pm w^2 \delta|, w | \alpha \pm \beta| + |w^2 \gamma \pm \delta|, \\ & |\alpha \pm \beta| + |w \gamma \pm (w^2 + w - 1)\delta|, |\beta \pm \alpha| + |w \delta \pm (w^2 + w - 1)\gamma|, \\ & |w \alpha \pm (w^2 + w - 1)\beta| + |\gamma \pm \delta|, |w \beta \pm (w^2 + w - 1)\alpha| + |\gamma \pm \delta|, \\ & |\alpha \pm \beta| + w | \gamma \mp \delta|, w | \alpha \pm \beta| + |\gamma \mp \delta| \right\}. \end{split}$$

$$\begin{array}{ll} (c) \ Let \ 1 < w < \sqrt{2} + 1. \ Then, \\ \|f\| &= \max \left\{ |\alpha \pm w^2 \beta| + w | \gamma \pm \delta|, |w^2 \alpha \pm \beta| + w | \gamma \pm \delta|, \\ & w | \alpha \pm \beta| + | \gamma \pm w^2 \delta|, w | \alpha \pm \beta| + |w^2 \gamma \pm \delta|, \\ & |w \alpha \pm (-w^2 + w + 1)\beta| + w^2 | \gamma \pm \delta|, |w \beta \pm (-w^2 + w + 1)\alpha| + w^2 | \gamma \pm \delta|, \\ & w^2 | \alpha \pm \beta| + |w \gamma \pm (-w^2 + w + 1)\delta|, w^2 | \alpha \pm \beta| + |w \delta \pm (-w^2 + w + 1)\gamma|, \\ & w^2 | \alpha \pm \beta| + w | \gamma \mp \delta|, w | \alpha \pm \beta| + w^2 | \gamma \mp \delta| \right\}. \end{array}$$

(d) Let $\sqrt{2} + 1 \leq w$. Then,

$$\begin{split} \|f\| &= \max\Big\{|\alpha \pm w^2\beta| + w|\gamma \pm \delta|, |w^2\alpha \pm \beta| + w|\gamma \pm \delta|, \\ &w|\alpha \pm \beta| + |\gamma \pm w^2\delta|, w|\alpha \pm \beta| + |w^2\gamma \pm \delta|, \\ |w^2\alpha \pm (1+2w)\beta| + w|\gamma \mp \delta|, |w^2\beta \pm (1+2w)\alpha| + w|\gamma \mp \delta|, \\ &w|\alpha \pm \beta| + |w^2\gamma \mp (1+2w)\delta|, w|\alpha \pm \beta| + |w^2\delta \mp (1+2w)\gamma|, \\ &\frac{(1+w)^2}{2}|\alpha \pm \beta| + \frac{w^2-1}{2}|\gamma \mp \delta|, \frac{w^2-1}{2}|\alpha \pm \beta| + \frac{(1+w)^2}{2}|\gamma \mp \delta|\Big\}. \end{split}$$

Proof. (a) and (b). It follows from Theorems 4, 5 and the fact that

$$\|f\| = \sup_{T \in \operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}} |f(T)|.$$

(c) and (d). It follows from Lemma 1, (a) and (b).

Theorem 8. Let $T = (a, b, c, d) \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})$. Then the following are equivalent:

 $\begin{array}{l} (a) \ T \in \exp B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})};\\ (b) \ (-a,-b,-c,-d) \in \exp B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})};\\ (c) \ (a,b,-c,-d) \in \exp B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})};\\ (d) \ (a,-b,c,-d) \in \exp B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})};\\ (e) \ (a,-b,-c,d) \in \exp B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})};\\ (f) \ (b,a,c,d) \in \exp B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})};\\ (g) \ (d,c,a,b) \in \exp B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}. \end{array}$

Proof. It follows from the arguments in the proof of Theorem 4.

Theorem 9. ([22]) Let E be a real Banach space such that $extB_E$ is finite. Suppose that $x \in ext B_E$ satisfies that there exists an $f \in E^*$ with f(x) = 1 = ||f||and |f(y)| < 1 for every $y \in ext B_E \setminus \{\pm x\}$. Then $x \in exp B_E$.

Theorem 10. The equality $\exp B_{\mathcal{L}(2\mathbb{R}^2_{o(w)})} = \exp B_{\mathcal{L}(2\mathbb{R}^2_{o(w)})}$ holds.

Proof. First, suppose that 0 < w < 1.

Claim 1. $T = (1, w^2, w, w) \in \exp B_{\mathcal{L}(2\mathbb{R}^2_{o(w)})}$ for 0 < w < 1.

Let $f \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})^{*}$ be such that $\alpha = 1 - \frac{w^{2}+4w}{3n}, \beta = \frac{1}{3n}, \gamma = \delta = \frac{2}{3n}$, where $n \in \mathbb{N}$ is big such that ||f|| = 1. By Theorem 7, 1 = ||f|| = f(T) and |f(S)| < 1 for every $S \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})} \setminus \{\pm T\}$. By Theorem 9, $T \in \operatorname{exp} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$. Hence, by Theorem 8, $(w, w, 1, w^{2}) \in \operatorname{exp} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$ for 0 < w < 1.

Claim 2. $T = (1, w^2 + 2w, w, -w) \in \exp B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})}$ for $w \le \sqrt{2} - 1$.

Let $f \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})^{*}$ be such that $\alpha = 1 - \frac{w^{2}+4w}{2n}, \beta = \frac{1}{2n}, \gamma = -\delta = \frac{1}{n}$, where $n \in \mathbb{N}$ is big such that ||f|| = 1. By Theorem 7, 1 = ||f|| = f(T) and |f(S)| < 1 for every $S \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})} \setminus \{\pm T\}$. By Theorem 9, $T \in \operatorname{exp} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$. Hence, by Theorem 8, $(w, -w, 1, w^{2} + 2w) \in \operatorname{exp} B_{\mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{o(w)})}$ for $w \leq \sqrt{2} - 1$

Claim 3. $T = (1, 1, w, w^2 + w - 1) \in \exp B_{\mathcal{L}(^2 \mathbb{R}^2_{o(w)})}$ for $\sqrt{2} - 1 < w < 1$.

Let $f \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})^{*}$ be such that $\alpha = \beta = \frac{1}{2}(1-\frac{1}{n}), \gamma = \frac{2}{n(w^{2}+3w-1)}, \delta = \frac{1}{n(w^{2}+3w-1)}$, where $n \in \mathbb{N}$ is big such that ||f|| = 1. By Theorem 7, 1 = ||f|| = f(T) and |f(S)| < 1 for every $S \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})} \setminus \{\pm T\}$. By Theorem 9, $T \in \operatorname{exp} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$. Hence, by Theorem 8, $T = (w, w^{2} + w - 1, 1, 1) \in \operatorname{exp} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$ for $\sqrt{2} - 1 < w < 1$.

 $\begin{array}{l} Claim \ {\it 4.} \ T = \left(\frac{(1+w)^2}{2}, \frac{(1+w)^2}{2}, \frac{1-w^2}{2}, -\frac{(1-w^2)}{2} \right) \in \, \exp B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})} \ \text{for} \ 0 < w \leq \sqrt{2} - 1. \end{array}$

Let $f \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})^{*}$ be such that $\alpha = \beta = \frac{1}{(1+w)^{2}}(1-\frac{1}{n}), \gamma = \frac{1}{n(1-w^{2})} = -\delta$, where $n \in \mathbb{N}$ is big such that ||f|| = 1. By Theorem 7, 1 = ||f|| = f(T) and |f(S)| < 1 for every $S \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})} \setminus \{\pm T\}$. By Theorem 9, $T \in \operatorname{exp} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$. Hence, by Theorem 8, $(\frac{1-w^{2}}{2}, \frac{1-w^{2}}{2}, \frac{(1+w)^{2}}{2}, -\frac{(1+w)^{2}}{2}) \in \operatorname{exp} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$ for $0 < w \le \sqrt{2} - 1$.

Claim 5.
$$T = (1, 1, w, w) \in \exp B_{\mathcal{L}(2\mathbb{R}^2_{o(w)})}$$
 for $\sqrt{2} - 1 \le w < 1$.

Let $f \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})^{*}$ be such that $\alpha = 1 - \frac{2}{n}, \beta = \frac{1}{n}, \gamma = \frac{1}{2nw} = -\delta$, where $n \in \mathbb{N}$ is big such that ||f|| = 1. By Theorem 7, 1 = ||f|| = f(T) and |f(S)| < 1 for every $S \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})} \setminus \{\pm T\}$. By Theorem 9, $T \in \operatorname{exp} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$. Hence, by Theorem 8, $T = (w, w, 1, -1) \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$ for $\sqrt{2} - 1 \leq w < 1$. We have shown that if 0 < w < 1, then $\operatorname{exp} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})} = \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$.

Suppose that 1 < w.

It follows that

$$\exp B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})} = \left\{ w^{2}T : T \in \exp B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(1/w)})} \right\} = \left\{ w^{2}T : T \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(1/w)})} \right\}$$
$$= \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}.$$

Therefore, we complete the proof.

Theorem 11. The following equalities hold:

 $(a) \exp B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})} = \operatorname{ext} B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})};$ $(b) \exp B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})} \setminus (\exp B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})} \cap \mathcal{L}_s(^2\mathbb{R}^2_{o(w)}))$ $= \operatorname{ext} B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})} \setminus (\operatorname{ext} B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})} \cap \mathcal{L}_s(^2\mathbb{R}^2_{o(w)})).$

Proof. (a). Notice that $(\exp B_{\mathcal{L}({}^2\mathbb{R}^2_{o(w)})} \cap \mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})) \subseteq \exp B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})}$ for all

 $0 < w, w \neq 1$. By Theorems 4 and 10, it suffices to show that

$$T = \left(1, 1, \frac{w^2 + 2w - 1}{2}, \frac{w^2 + 2w - 1}{2}\right) \in \exp B_{\mathcal{L}_s(^2\mathbb{R}^2_{o(w)})}$$

for $\sqrt{2} - 1 < w < 1$.

Let $f \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})^{*}$ be such that $\alpha = 1 - \frac{(1+w)^{2}}{2n}, \beta = \frac{1}{n}, \gamma = \delta = \frac{1}{2n}$, where $n \in \mathbb{N}$ is big such that ||f|| = 1. By Theorem 7, 1 = ||f|| = f(T) and |f(S)| < 1 for every $S \in \operatorname{ext} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})} \setminus \{\pm T\}$. By Theorem 9, $T \in \operatorname{exp} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$. Hence, $T \in \operatorname{exp} B_{\mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{o(w)})}$.

(b) follows from (a) and Theorem 10.

6 The smooth points of the unit balls of $\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})$ and $\mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{o(w)})$

Theorem 12. Let 0 < w < 1 and $T = (a, b, c, d) \in \mathcal{L}({}^2\mathbb{R}^2_{o(w)})$ be such that ||T|| = 1. Then, $T \in \operatorname{sm} B_{\mathcal{L}({}^2\mathbb{R}^2_{o(w)})}$ if and only if there are $i_1, j_1 \in \{1, 2, 3, 4\}$ such that

$$|T(X_{i_1}, X_{j_1})| = 1$$
 and $|T(X_i, X_j)| < 1$

for every $i, j \in \{1, 2, 3, 4\}$ with $(i, j) \neq (i_1, j_1)$, where $X_1 = (1, 0), X_2 = (0, 1), X_3 = ((1 + w)^{-1}, (1 + w)^{-1}), X_4 = ((1 + w)^{-1}, -(1 + w)^{-1}).$

Proof. (\Rightarrow) . Assume the assertion is not true.

Suppose that $|T(X_1, X_2)| = 1$, $|T(X_3, x_4)| = 1$. Let $f_1 = \text{sign}(T(X_1, X_2))\delta_{X_1, X_2}$ and $f_2 = \text{sign}(T(X_3, X_4))\delta_{X_3, X_4}$ be elements of $\mathcal{L}({}^2\mathbb{R}^2_{o(w)})^*$, where $\delta_{X_1, X_2}(S) = S(X_1, X_2)$ for $S \in \mathcal{L}({}^2\mathbb{R}^2_{o(w)})$. Notice that

$$f_1 \neq f_2$$
, $||f_j|| = 1 = f_j(T)$ for $j = 1, 2$.

Hence, T is not a smooth point. This is a contradiction. Similarly, we conclude that the other cases reach a contradiction. Therefore, the assertion is true.

(⇐). Let $f \in \mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})^{*}$ be such that f(T) = 1 = ||f||. Let $\alpha = f(x_{1}y_{1}), \beta = f(x_{2}y_{2}), \gamma = f(x_{1}y_{2}), \rho = f(x_{2}y_{1}).$

181

Case 1. $|T(X_1, X_1)| = 1$ and $|T(X_i, X_j)| < 1$ for every $i, j \in \{1, 2, 3, 4\}$ with $(i, j) \neq (1, 1)$.

Without loss of generality, we may assume that $a = T(X_1, X_1) = 1$. By Theorem 2, there is $N \in \mathbb{N}$ such that

$$1 = \left\| T \pm \left(0, \frac{1}{N}, 0, 0 \right) \right\| = \left\| T \pm \left(0, 0, \frac{1}{N}, 0 \right) \right\| = \left\| T \pm \left(0, 0, 0, \frac{1}{N} \right) \right\|.$$

We claim that $\alpha = 1, \beta = \gamma = \rho = 0$. It follows that

$$1 \geq \max\left\{ \left| f\left(T \pm \left(0, \frac{1}{N}, 0, 0\right)\right) \right|, \left| f\left(T \pm \left(0, 0, \frac{1}{N}, 0\right)\right) \right|, \left| f\left(T \pm \left(0, 0, 0, \frac{1}{N}\right)\right) \right| \right\} \\ = \max\left\{ 1 + \left| f\left(\left(0, \frac{1}{N}, 0, 0\right)\right) \right|, 1 + \left| f\left(\left(0, 0, \frac{1}{N}, 0\right)\right) \right|, 1 + \left| f\left(\left(0, 0, 0, \frac{1}{N}\right)\right) \right| \right\},$$

which shows that

$$0 = f\left(\left(0, \frac{1}{N}, 0, 0\right)\right) = f\left(\left(0, 0, \frac{1}{N}, 0\right)\right) = f\left(\left(0, 0, 0, \frac{1}{N}\right)\right).$$

Hence, $\beta = \gamma = \rho = 0$. Since

$$a = 1 = f(T) = a\alpha + b\beta + c\gamma + d\rho = a\alpha,$$

 $\alpha=1.$ Hence, f is unique. Hence, $T\in \mathrm{sm}\, B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}.$

Case 2. $|T(X_1, X_3)| = 1$ and $|T(X_i, X_j)| < 1$ for every $i, j \in \{1, 2, 3, 4\}$ with $(i, j) \neq (1, 3)$.

Without loss of generality, we may assume that $\frac{1}{1+w}(a+c) = T(X_1, X_3) = 1$. By Theorem 2, there is $N \in \mathbb{N}$ such that

$$1 = \left\| T \pm \left(\frac{1}{N}, 0, -\frac{1}{N}, 0\right) \right\| = \left\| T \pm \left(0, \frac{1}{N}, 0, \frac{1}{N}\right) \right\| = \left\| T \pm \left(0, \frac{1}{N}, 0, -\frac{1}{N}\right) \right\|.$$

We claim that $\alpha = \gamma = \frac{1}{1+w}, \beta = \rho = 0$. It follows that

$$1 \geq \max \left\{ \left| f\left(T \pm \left(\frac{1}{N}, 0, -\frac{1}{N}, 0\right) \right) \right|, \left| f\left(T \pm \left(0, \frac{1}{N}, 0, \frac{1}{N}\right) \right) \right|, \\ \left| f\left(T \pm \left(0, \frac{1}{N}, 0, -\frac{1}{N}\right) \right) \right| \right\} \\ = \max \left\{ 1 + \left| f\left(\left(\frac{1}{N}, 0, -\frac{1}{N}, 0\right) \right) \right|, 1 + \left| f\left(\left(0, \frac{1}{N}, 0, \frac{1}{N}\right) \right) \right|, \\ 1 + \left| f\left(\left(0, \frac{1}{N}, 0, -\frac{1}{N}\right) \right) \right| \right\},$$

which shows that

$$0 = f\left(\left(\frac{1}{N}, 0, -\frac{1}{N}, 0\right)\right) = f\left(\left(0, \frac{1}{N}, 0, \frac{1}{N}\right)\right) = f\left(\left(0, \frac{1}{N}, 0, -\frac{1}{N}\right)\right).$$

Hence, $\alpha = \gamma, \beta = \rho = 0$. Since

$$\frac{1}{1+w}(a+c) = 1 = f(T) = \alpha(a+c),$$

 $\alpha=\gamma=\frac{1}{1+w}.$ Hence, f is unique. Hence, $T\in \mathrm{sm}\,B_{\mathcal{L}(^2\mathbb{R}^2_{o(w)})}.$

Case 3. $|T(X_3, X_3)| = 1$ and $|T(X_i, X_j)| < 1$ for every $i, j \in \{1, 2, 3, 4\}$ with $(i, j) \neq (3, 3)$.

Without loss of generality, we may assume that $\frac{1}{(1+w)^2}(a+b+c+d) = T(X_3, X_3) = 1$. By Theorem 2, there is $N \in \mathbb{N}$ such that

$$1 = \left\| T \pm \left(\frac{1}{N}, -\frac{1}{N}, \frac{1}{N}, -\frac{1}{N}\right) \right\| = \left\| T \pm \left(\frac{1}{N}, \frac{1}{N}, -\frac{1}{N}, -\frac{1}{N}\right) \right\| = \left\| T \pm \left(\frac{1}{N}, 0, -\frac{1}{N}, 0\right) \right\|.$$

We claim that $\alpha = \gamma = \beta = \rho = \frac{1}{(1+w)^2}$. It follows that

$$1 \geq \max\left\{ \left| f\left(T \pm \left(\frac{1}{N}, -\frac{1}{N}, \frac{1}{N}, -\frac{1}{N}\right) \right) \right|, \left| f\left(T \pm \left(\frac{1}{N}, \frac{1}{N}, -\frac{1}{N}, -\frac{1}{N}\right) \right) \right|, \\ \left| f\left(T \pm \left(\frac{1}{N}, 0, -\frac{1}{N}, 0\right) \right) \right| \right\} \\ = \max\left\{ 1 + \left| f\left(\left(\frac{1}{N}, -\frac{1}{N}, \frac{1}{N}, -\frac{1}{N}\right) \right) \right|, 1 + \left| f\left(\left(\frac{1}{N}, \frac{1}{N}, -\frac{1}{N}, -\frac{1}{N}\right) \right) \right|, \\ 1 + \left| f\left(\left(\frac{1}{N}, 0, -\frac{1}{N}, 0\right) \right) \right| \right\},$$

which shows that

$$0 = f\left(\left(\frac{1}{N}, -\frac{1}{N}, \frac{1}{N}, -\frac{1}{N}\right)\right) = f\left(\left(\frac{1}{N}, \frac{1}{N}, -\frac{1}{N}, -\frac{1}{N}\right)\right) = f\left(\left(\frac{1}{N}, 0, -\frac{1}{N}, 0\right)\right).$$

Hence, $\alpha = \gamma = \beta = \rho$. Since

$$\frac{1}{(1+w)^2}(a+b+c+d) = 1 = f(T) = \alpha(a+b+c+d),$$

 $\alpha = \gamma = \beta = \rho = \frac{1}{(1+w)^2}$. Hence, f is unique. Hence, $T \in \operatorname{sm} B_{\mathcal{L}({}^2\mathbb{R}^2_{o(w)})}$.

By analogous arguments in cases 1-3, in the other cases we may conclude that $T \in \operatorname{sm} B_{\mathcal{L}(2\mathbb{R}^2_{o(w)})}$. We omit the proofs. Therefore, we complete the proof. \Box

Theorem 13. Let w > 1 and $T = (a, b, c, d) \in \mathcal{L}({}^2\mathbb{R}^2_{o(w)})$ be such that ||T|| = 1. Then, $T \in \operatorname{sm} B_{\mathcal{L}({}^2\mathbb{R}^2_{o(w)})}$ if and only if there are $i_1, j_1 \in \{1, 2, 3, 4\}$ such that

$$|T(Y_{i_1}, Y_{j_1})| = 1$$
 and $|T(Y_i, Y_j)| < 1$

for every $i, j \in \{1, 2, 3, 4\}$ with $(i, j) \neq (i_1, j_1)$, where $Y_1 = (w^{-1}, 0), Y_2 = (0, w^{-1}), Y_3 = ((1+w)^{-1}, (1+w)^{-1}), Y_4 = ((1+w)^{-1}, -(1+w)^{-1}).$

Proof. It follows from analogous arguments in the proof of Theorem 12.

Theorem 14. Let 0 < w < 1 and $T = (a, b, c, c) \in \mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})$ be such that ||T|| = 1. Then, $T \in \operatorname{sm} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})}$ if and only if there are $i_1, j_1 \in \{1, 2, 3, 4\}$ such that

$$T(X_{i_1}, X_{j_1})| = |T(X_{j_1}, X_{i_1})| = 1 \text{ and } |T(X_i, X_j)| < 1$$

for every $i, j \in \{1, 2, 3, 4\}$ with $(i, j) \neq (i_1, j_1), (j_1, i_1).$

183

Proof. We follow analogous arguments in the proof of Theorem 12.

 (\Rightarrow) follows by the same argument in the proof (\Rightarrow) of Theorem 12.

(\Leftarrow). Let $g \in \mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})^*$ be such that g(T) = 1 = ||g|| and $\alpha = g(x_1x_2), \beta = g(y_1y_2), \gamma = g(x_1y_2 + x_2y_1).$

Case 1. $|T(X_1, X_1)| = 1$ and $|T(X_i, X_j)| < 1$ for every $i, j \in \{1, 2, 3, 4\}$ with $(i, j) \neq (1, 1)$.

Without loss of generality, we may assume that $a = T(X_1, X_1) = 1$. By Theorem 2, there is $N \in \mathbb{N}$ such that

$$1 = \left\| T \pm \left(0, \frac{1}{N}, 0, 0 \right) \right\| = \left\| T \pm \left(0, 0, \frac{1}{N}, \frac{1}{N} \right) \right\|$$

We claim that $\alpha = 1, \beta = \gamma = 0$. It follows that

$$1 \geq \max\left\{ \left| g\left(T \pm \left(0, \frac{1}{N}, 0, 0\right)\right) \right|, \left| g\left(T \pm \left(0, 0, \frac{1}{N}, \frac{1}{N}\right)\right) \right| \right\} \\ = \max\left\{ 1 + \left| g\left(\left(0, \frac{1}{N}, 0, 0\right)\right) \right|, 1 + \left| g\left(\left(0, 0, \frac{1}{N}, \frac{1}{N}\right)\right) \right| \right\},$$

which shows that

$$0 = g\left(\left(0, \frac{1}{N}, 0, 0\right)\right) = g\left(\left(0, 0, \frac{1}{N}, \frac{1}{N}\right)\right).$$

Hence, $\beta = \gamma = 0$. Since

$$a = 1 = g(T) = a\alpha + b\beta + c\gamma = a\alpha,$$

 $\alpha = 1$. Hence, g is unique. Hence, $T \in \operatorname{sm} B_{\mathcal{L}_s(2\mathbb{R}^2_{\alpha(w)})}$.

Case 2. $|T(X_1, X_3)| = 1$ and $|T(X_i, X_j)| < 1$ for every $i, j \in \{1, 2, 3, 4\}$ with $(i, j) \neq (1, 3)$.

Without loss of generality, we may assume that $\frac{1}{1+w}(a+c) = T(X_1, X_3) = 1$. By Theorem 2, there is $N \in \mathbb{N}$ such that

$$1 = \left\| T \pm \left(-\frac{1}{N}, \frac{1}{N}, \frac{1}{N}, \frac{1}{N} \right) \right\| = \left\| T \pm \left(0, \frac{1}{N}, 0, 0 \right) \right\|.$$

We claim that $\alpha = \gamma = \frac{1}{1+w}, \beta = 0$. It follows that

$$1 \geq \max\left\{ \left| g\left(T \pm \left(-\frac{1}{N}, \frac{1}{N}, \frac{1}{N}, \frac{1}{N}\right) \right) \right|, \left| g\left(T \pm \left(0, \frac{1}{N}, 0, 0\right) \right) \right| \right\} \\ = \max\left\{ 1 + \left| g\left(\left(-\frac{1}{N}, \frac{1}{N}, \frac{1}{N}, \frac{1}{N}\right) \right) \right|, 1 + \left| g\left(\left(0, \frac{1}{N}, 0, 0\right) \right) \right| \right\},$$

which shows that

$$0 = g\left(\left(-\frac{1}{N}, \frac{1}{N}, \frac{1}{N}, \frac{1}{N}\right)\right) = g\left(\left(0, \frac{1}{N}, 0, 0\right)\right).$$

Hence, $\alpha = \gamma, \beta = 0$. Since

$$\frac{1}{1+w}(a+c) = 1 = g(T) = \alpha(a+c),$$

 $\alpha = \gamma = \frac{1}{1+w}$. Hence, g is unique. Hence, $T \in \operatorname{sm} B_{\mathcal{L}({}^{2}\mathbb{R}^{2}_{o(w)})}$.

Case 3. $|T(X_3, X_3)| = 1$ and $|T(X_i, X_j)| < 1$ for every $i, j \in \{1, 2, 3, 4\}$ with $(i, j) \neq (3, 3)$.

Without loss of generality, we may assume that $\frac{1}{(1+w)^2}(a+b+2c) = T(X_3, X_3) = 1$. By Theorem 2, there is $N \in \mathbb{N}$ such that

$$1 = \left\| T \pm \left(\frac{2}{N}, 0, -\frac{1}{N}, -\frac{1}{N}\right) \right\| = \left\| T \pm \left(-\frac{1}{N}, \frac{1}{N}, 0, 0\right) \right\|.$$

We claim that $\alpha = \beta = \frac{\gamma}{2} = \frac{1}{(1+w)^2}$. It follows that

$$1 \geq \max\left\{ \left| g\left(T \pm \left(\frac{2}{N}, 0, -\frac{1}{N}, -\frac{1}{N}\right) \right) \right|, \left| g\left(T \pm \left(-\frac{1}{N}, \frac{1}{N}, 0, 0\right) \right) \right| \right\} \\ = \max\left\{ 1 + \left| g\left(\left(\frac{2}{N}, 0, -\frac{1}{N}, -\frac{1}{N}\right) \right) \right|, 1 + \left| g\left(\left(-\frac{1}{N}, \frac{1}{N}, 0, 0\right) \right) \right| \right\},$$

which shows that

$$0 = g\left(\left(\frac{2}{N}, 0, -\frac{1}{N}, -\frac{1}{N}\right)\right) = g\left(\left(-\frac{1}{N}, \frac{1}{N}, 0, 0\right)\right).$$

Hence, $\alpha = \beta = \frac{\gamma}{2}$. Since

$$\frac{1}{(1+w)^2}(a+b+2c) = 1 = g(T) = \alpha(a+b+2c),$$

 $\alpha = \beta = \frac{\gamma}{2} = \frac{1}{(1+w)^2}$. Hence, g is unique. Hence, $T \in \operatorname{sm} B_{\mathcal{L}_s(2\mathbb{R}^2_{o(w)})}$.

By analogous arguments in cases 1-3, in the other cases we may conclude that $T \in \operatorname{sm} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})}$. We omit the proofs. Therefore, we complete the proof. \Box

Theorem 15. Let w > 1 and $T = (a, b, c, c) \in \mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})$ be such that ||T|| = 1. Then, $T \in \operatorname{sm} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})}$ if and only if there are $i_1, j_1 \in \{1, 2, 3, 4\}$ such that

$$|T(Y_{i_1}, Y_{j_1})| = |T(Y_{j_1}, Y_{i_1})| = 1$$
 and $|T(Y_i, Y_j)| < 1$

for every $i, j \in \{1, 2, 3, 4\}$ with $(i, j) \neq (i_1, j_1), (j_1, i_1).$

Proof. It follows from analogous arguments in the proof of Theorem 14. \Box

Theorem 16. Let $0 < w, w \neq 1$. Then, sm $B_{\mathcal{L}(2\mathbb{R}^2_{o(w)})} \bigcap \mathcal{L}_s({}^2\mathbb{R}^2_{o(w)}) \subsetneq \operatorname{sm} B_{\mathcal{L}_s(2\mathbb{R}^2_{o(w)})}$. *Proof.* By Theorems 12–14, sm $B_{\mathcal{L}(2\mathbb{R}^2_{o(w)})} \bigcap \mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})$ is a subset of sm $B_{\mathcal{L}_s(2\mathbb{R}^2_{o(w)})}$. Let 0 < w < 1. Let $T_0 \in \operatorname{sm} B_{\mathcal{L}_s(2\mathbb{R}^2_{o(w)})}$ be such that

$$|T_0(X_1, X_2)| = 1$$
 and $|T_0(X_i, X_j)| < 1$

for every $i, j \in \{1, 2, 3, 4\}$ with $(i, j) \neq (1, 2)$. Since $|T_0(X_2, X_1)| = 1$, by Theorem 4.1, $T_0 \notin \operatorname{sm} B_{\mathcal{L}({}^2\mathbb{R}^2_{o(w)})} \bigcap \mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})$. If w > 1, we may choose $T_1 \in \operatorname{sm} B_{\mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})}$ such that $T_1 \notin \operatorname{sm} B_{\mathcal{L}({}^2\mathbb{R}^2_{o(w)})} \bigcap \mathcal{L}_s({}^2\mathbb{R}^2_{o(w)})$. We complete the proof. \Box

References

- Aron. R.M. and Klimek, M., Supremum norms for quadratic polynomials, Arch. Math. (Basel) 76 (2001), 73–80.
- [2] Cavalcante, W.V., Pellegrino, D.M. and Teixeira, E.V., Geometry of multilinear forms, Commun. Contemp. Math. 22 (2020), no. 2, 1950011.
- [3] Choi, Y.S., Ki, H. and Kim, S.G., Extreme polynomials and multilinear forms on l₁, J. Math. Anal. Appl. 228 (1998), 467–482.
- [4] Choi, Y.S., Ki, H. and Kim, S.G., *The unit ball of* $\mathcal{P}(^{2}l_{2}^{2})$, Arch. Math. (Basel) **71** (1998), 472–480.
- [5] Choi, Y.S., Ki, H. and Kim, S.G., *Extreme polynomials on c*₀, Indian J. Pure Appl. Math. **29** (1998), 983–989.
- [6] Choi, Y.S., Ki, H. and Kim, S.G., Smooth points of the unit ball of the space P(²l₁), Results Math. 36 (1999), 26–33.
- [7] Choi, Y.S., Ki, H. and Kim, S.G., Exposed points of the unit balls of the spaces $\mathcal{P}(^{2}l_{p}^{2})$ $(p = 1, 2, \infty)$, Indian J. Pure Appl. Math. **35** (2004), 37–41.
- [8] Dineen, S., Complex analysis on infinite dimensional spaces, Springer-Verlag, London, 1999.
- [9] Gámez-Merino, J.L., Muñoz-Fernández, G.A., Sánchez, V.M. and Seoane-Sepúlveda, J.B., *Inequalities for polynomials on the unit square via the Krein-Milman Theorem*, J. Convex Anal. **20** (2013), no. 1, 125–142.
- [10] Grecu, B.C., Geometry of three-homogeneous polynomials on real Hilbert spaces, J. Math. Anal. Appl. 246 (2000), 217–229.
- [11] Grecu, B.C., Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math. (Basel) 76 (2001), no. 6, 445–454.
- [12] Grecu, B.C., Geometry of 2-homogeneous polynomials on l_p spaces, 1 , J. Math. Anal. Appl.**273**(2002), 262–282.
- [13] Grecu, B.C., Extreme 2-homogeneous polynomials on Hilbert spaces, Quaest. Math. 25 (2002), no. 4, 421–435.
- [14] Grecu, B.C., Geometry of homogeneous polynomials on two- dimensional real Hilbert spaces, J. Math. Anal. Appl. 293 (2004), 578–588.
- [15] Grecu, B.C., Muñoz-Fernández, G.A. and Seoane-Sepúlveda, J.B., The unit ball of the complex P(³H), Math. Z. 263 (2009), 775–785.
- [16] Kim, S.G., Exposed 2-homogeneous polynomials on $\mathcal{P}(^{2}l_{p}^{2})$ $(1 \leq p \leq \infty)$, Math. Proc. R. Ir. Acad. **107** (2007), 123–129.

- [17] Kim, S.G., The unit ball of $\mathcal{L}_s(^2l_\infty^2)$, Extracta Math. 24 (2009), 17–29.
- [18] Kim, S.G., The unit ball of $\mathcal{P}(^{2}d_{*}(1,w)^{2})$, Math. Proc. R. Ir. Acad. 111 (2011), no. 2, 79–94.
- [19] Kim, S.G., The unit ball of $\mathcal{L}_s(^2d_*(1,w)^2)$, Kyungpook Math. J. **53** (2013), 295–306.
- [20] Kim, S.G., Smooth polynomials of $\mathcal{P}(^{2}d_{*}(1,w)^{2})$, Math. Proc. R. Ir. Acad. **113A** (2013), no. 1, 45–58.
- [21] Kim, S.G., Extreme bilinear forms of $\mathcal{L}(^{2}d_{*}(1,w)^{2})$, Kyungpook Math. J. 53 (2013), 625–638.
- [22] Kim, S.G., Exposed symmetric bilinear forms of $\mathcal{L}_s(^2d_*(1,w)^2)$, Kyungpook Math. J. **54** (2014), 341–347.
- [23] Kim, S.G., Polarization and unconditional constants of $\mathcal{P}(^{2}d_{*}(1,w)^{2})$, Commun. Korean Math. Soc. **29** (2014), 421–428.
- [24] Kim, S.G., Exposed bilinear forms of $\mathcal{L}(^{2}d_{*}(1,w)^{2})$, Kyungpook Math. J. 55 (2015), 119–126.
- [25] Kim, S.G., Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math. 13 (2016), 2827–2839.
- [26] Kim, S.G., The unit ball of $\mathcal{L}({}^{2}\mathbb{R}^{2}_{h(w)})$, Bull. Korean Math. Soc. 54 (2017), 417–428.
- [27] S.G. Kim, *Extremal problems for* $\mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})$, Kyungpook Math. J. **57** (2017), 223–232.
- [28] Kim, S.G., The unit ball of $\mathcal{L}_s(^2l_\infty^3)$, Comment. Math. (Prace Mat.) 57 (2017), 1–7.
- [29] S.G. Kim, The geometry of $\mathcal{L}_{s}({}^{3}l_{\infty}^{2})$, Commun. Korean Math. Soc. **32** (2017), 991–997.
- [30] Kim, S.G., Extreme 2-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants, Studia Sci. Math. Hungar. 54 (2017), 362–393.
- [31] Kim, S.G., The geometry of L(³l²_∞) and optimal constants in the Bohnenblust-Hill inequality for multilinear forms and polynomials, Extracta Math. 33 (2018), no. 1, 51–66.
- [32] Kim, S.G., Extreme bilinear forms on ℝⁿ with the supremum norm, Period. Math. Hungar. 77 (2018), 274–290.
- [33] Kim, S.G., Exposed polynomials of $\mathcal{P}({}^{2}\mathbb{R}^{2}_{h(\frac{1}{2})})$, Extracta Math. **33** (2018), no. 2, 127–143.

- [34] S.G. Kim, The unit ball of the space of bilinear forms on ℝ³ with the supremum norm, Commun. Korean Math. Soc. 34 (2019), 487–494.
- [35] Kim, S.G., Smooth points of $\mathcal{L}_s({}^nl_{\infty}^2)$, Bull. Korean Math. Soc. 57 (2020), no. 2, 443–447.
- [36] Kim, S.G., *Extreme points of the space* $\mathcal{L}(^{2}l_{\infty})$, Commun. Korean Math. Soc. **35** (2020), no. 3, 799–807.
- [37] Kim, S.G., Extreme points, exposed points and smooth points of the space $\mathcal{L}_s(^2l_{\infty}^3)$, Kyungpook Math. J. **60** (2020), 485–505.
- [38] Kim, S.G., The unit balls of $\mathcal{L}({}^{n}l_{\infty}^{m})$ and $\mathcal{L}_{s}({}^{n}l_{\infty}^{m})$, Studia Sci. Math. Hungar. 57 (2020), no. 3, 267–283.
- [39] S.G. Kim, Extreme and exposed points of $\mathcal{L}(nl_{\infty}^2)$ and $\mathcal{L}_s(nl_{\infty}^2)$, Extracta Math. **35** (2020), no. 2, 127–135.
- [40] Kim, S.G., Smooth points of $\mathcal{L}({}^{n}l_{\infty}^{m})$ and $\mathcal{L}_{s}({}^{n}l_{\infty}^{m})$, Comment. Math. (Prace Mat.) **60-61** (2020-2021), no. 1-2. in press.
- [41] Kim, S.G., Extreme and exposed symmetric bilinear forms on the space $\mathcal{L}_s(^2l_{\infty}^2)$, Carpathian Math. Publ. **12** (2020), no. 2, 340–352.
- [42] Kim, S.G., Geometry of multilinear forms on \mathbb{R}^m with a certain norm, Acta Sci. Math. (Szeged) 87 (2021), no. 1-2, in press.
- [43] Kim, S.G. and Lee, S.H., Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131 (2003), 449–453.
- [44] Konheim, A.G. and Rivlin, T.J., Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly 73 (1966), 505–507.
- [45] Krein, M.G. and Milman, D.P., On extreme points of regular convex sets, Studia Math. 9 (1940), 133–137.
- [46] Milev, L. and Naidenov, N., Strictly definite extreme points of the unit ball in a polynomial space, C. R. Acad. Bulg. Sci. 61 (2008), 1393–1400.
- [47] Milev, L. and Naidenov, N., Semidefinite extreme points of the unit ball in a polynomial space, J. Math. Anal. Appl. 405 (2013), 631–641.
- [48] Muñoz-Fernández, G.A., Pellegrino, D., Seoane-Sepúlveda, J.B., and Weber, A., Supremum norms for 2-homogeneous polynomials on circle sectors, J. Convex Anal. 21 (2014), no. 3, 745–764.
- [49] Muñoz-Fernández, G.A., Révész, S.G. and Seoane-Sepúlveda, J.B., Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand. 105 (2009), 147–160.

- [50] Muñoz-Fernández, G.A. and Seoane-Sepúlveda, J.B., Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2008), 1069–1087.
- [51] Neuwirth, S., The maximum modulus of a trigonometric trinomial, J. Anal. Math. 104 (2008), 371–396.
- [52] Ryan, R.A. and Turett, B., Geometry of spaces of polynomials, J. Math. Anal. Appl. 221 (1998), 698–711.

Sung Guen Kim