ON GENERALIZED PSEUDO-PROJECTIVE CURVATURE TENSOR OF PARA-KENMOTSU MANIFOLDS

A. GOYAL ${ }^{1}$, G. PANDEY ${ }^{2}$, M. K. PANDEY ${ }^{3}$ and T. RAGHUWANSHI* ${ }^{4}$

Abstract

The object of the present paper is to generalize pseudo-projective curvature tensor of para-Kenmotsu manifold with the help of a new generalized $(0,2)$ symmetric tensor z introduced by Mantica and Suh. Various geometric properties of generalized pseudo-projective curvature tensor of paraKenmotsu manifold have been studied. It is shown that a generalized pseudoprojectively ϕ-symmetric para-Kenmotsu manifold is an Einstein manifold.

2010 Mathematics Subject Classification: 53C15, 53C25.

Key words: Pseudo-projective curvature tensor, para-Kenmotsu manifold, Einstein manifold, η-Einstein manifold, Generalized pseudo-projective curvature tensor.

1 Introduction

The projective tensor is one of the major curvature tensors. The study of pseudo-projective curvature tensor has been a very attractive field for investigations in the past decades. A tensor field \bar{P} was defined and studied in 2002 by Bhagwat Prasad [18] on a Riemannian manifold of dimension n, which includes projective curvature tensor P. This tensor field \bar{P} referred to as pseudo-projective curvature tensor. In 2011, H.G. Nagaraja and G. Somashekhara [14] extended pseudo-projective curvature tensor in Sasakian manifolds. After 2012, the pseudoprojective curvature tensor analysis in LP-Sasakian manifolds was resumed by

[^0]Y.B. Maralabhavi and G.S. Shivaprasanna [12]. In 2016, S. Mallick, Y.J. Suh and U.C. De [11] defined and studied a space time with pseudo-projective curvature tensor. Subsequently, several researchers performed a study of pseudo-projective curvature tensor in a number of directions, such as $[4,5,13,15,17,21,22]$. The pseudo-projective curvature tensor is defined by [18]
\[

$$
\begin{align*}
\bar{P}(X, Y, U)= & a R(X, Y, U)+b[S(Y, U) X-S(X, U) Y] \\
& -\frac{r}{n}\left(\frac{a}{n-1}+b\right)[g(Y, U) X-g(X, U) Y], \tag{1}
\end{align*}
$$
\]

where a and b are constants such that $\mathrm{a}, \mathrm{b} \neq 0$ and R is the curvature tensor, S is the Ricci tensor and r is the scalar curvature tensor.

The notion of an almost para-contact manifold was introduced by I. Sato [19]. Since the publication of [26], paracontact metric manifolds have been studied by many authors in recent years. The importance of para-Kenmotsu geometry, have been pointed out especially in the last years by several papers highlighting the exchanges with the theory of para-Kähler manifolds and its role in semi-Riemannian geometry and mathematical physics $[3,7,8,20]$.

In this paper, we consider the generalized pseudo-projective curvature tensor of para-Kenmotsu manifolds and study some properties of generalized pseudoprojective curvature tensor. The organisation of the paper is as follows: After preliminaries on para-Kenmotsu manifold in Section 2, we describe briefly the generalized pseudo-projective curvature tensor on para-Kenmotsu manifold in Section 3 and also we study some properties of generalized pseudo-projective curvature tensor in para-Kenmotsu manifold. In Section 4, we study a generalized pseudo-projectively semi-symmetric para-Kenmotsu manifold is an η Einstein manifold. Further in the Section 5, we show that a generalized pseudo-projectively Ricci semi-symmetric para-Kenmotsu manifold is either Einstein manifold or $\psi=$ $\frac{a n(n-1)+r a+b r(n-1)}{b n(n-1)}$ on it. In the last section we show that the generalized pseudoprojectively ϕ-symmetric para-Kenmotsu manifold is an Einstein manifold.

2 Preliminaries

An n-dimensional differentiable manifold M^{n} is said to have almost paracontact structure (ϕ, ξ, η), where ϕ is a tensor field of type $(1,1), \xi$ is a vector field known as characteristic vector field and η is a 1-form satisfying the following relations

$$
\begin{gather*}
\phi^{2}(X)=X-\eta(X) \xi, \tag{2}\\
\eta(\phi X)=0, \tag{3}\\
\phi(\xi)=0, \tag{4}
\end{gather*}
$$

and

$$
\begin{equation*}
\eta(\xi)=1 . \tag{5}
\end{equation*}
$$

On generalized pseudo-projective curvature tensor ...

A differentiable manifold with almost para-contact structure (ϕ, ξ, η) is called an almost para-contact manifold. Further, if the manifold M^{n} has a semi-Riemannian metric g satisfying

$$
\begin{equation*}
\eta(X)=g(X, \xi) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
g(\phi X, \phi Y)=-g(X, Y)+\eta(X) \eta(Y) . \tag{7}
\end{equation*}
$$

Then the structure (ϕ, ξ, η, g) satisfying conditions (2) to (7) is called an almost para-contact Riemannian structure and the manifold M^{n} with such a structure is called an almost para-contact Riemannian manifold [1, 19].

Now we briefly present an account of an analogue of the Kenmotsu manifold in paracontact geometry which will be called para-Kenmotsu.

Definition 1. The almost paracontact metric structure (ϕ, ξ, η, g) is para-Kenmotsu should this relation hold[2, 16], if the Levi-Civita connection ∇ of g satisfies $\left(\nabla_{X} \phi\right) Y=g(\phi X, Y) \xi-\eta(Y) \phi X$, for any $X, Y \in \mathfrak{X}(M)$.

On a para-Kenmotsu manifold [2, 20], the following relations hold:

$$
\begin{gather*}
\nabla_{X} \xi=X-\eta(X) \xi \tag{8}\\
\left(\nabla_{X} \eta\right) Y=g(X, Y)-\eta(X) \eta(Y), \tag{9}\\
\eta(R(X, Y, Z))=g(X, Z) \eta(Y)-g(Y, Z) \eta(X), \tag{10}\\
R(X, Y, \xi)=\eta(X) Y-\eta(Y) X, \tag{11}\\
R(X, \xi, Y)=-R(\xi, X, Y)=g(X, Y) \xi-\eta(Y) X, \tag{12}\\
S(\phi X, \phi Y)=-(n-1) g(\phi X, \phi Y), \tag{13}\\
S(X, \xi)=-(n-1) \eta(X), \tag{14}\\
Q \xi=-(n-1) \xi, \tag{15}\\
r=-n(n-1), \tag{16}
\end{gather*}
$$

for any vector fields X, Y, Z, where Q is the Ricci operator that is $g(Q X, Y)=$ $S(X, Y), S$ is the Ricci tensor and r is the scalar curvature.

In A. M. Blaga [2], gave an example on para-Kenmotsu manifold:
Example 1. We consider the three dimensional manifold $M^{3}=\{(x, y, z) \in$ $\left.\mathbb{R}^{3}, z \neq 0\right\}$, where (x, y, z) are the standard co-ordinates in \mathbb{R}^{3}. The vector fields

$$
e_{1}:=\frac{\partial}{\partial x}, e_{2}:=\frac{\partial}{\partial y}, e_{3}:=-\frac{\partial}{\partial z}
$$

are linearly independent at each point of the manifold.
Define

$$
\phi:=\frac{\partial}{\partial y} \otimes d x+\frac{\partial}{\partial x} \otimes d y, \xi:=-\frac{\partial}{\partial z}, \eta:=-d z
$$

$$
g:=d x \otimes d x-d y \otimes d y+d z \otimes d z .
$$

Then it follows that

$$
\begin{gathered}
\phi e_{1}=e_{2}, \phi e_{2}=e_{1}, \phi e_{3}=0 \\
\eta\left(e_{1}\right)=0, \eta\left(e_{2}\right)=0, \eta\left(e_{3}\right)=1
\end{gathered}
$$

Let ∇ be the Levi-Civita connetion with respect to metric g. Then, we have

$$
\left[e_{1}, e_{2}\right]=0,\left[e_{2}, e_{3}\right]=0,\left[e_{3}, e_{1}\right]=0
$$

The Riemannian connection ∇ of the metric g is deduced from Koszul's formula

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right) & =X(g(Y, Z))+Y(g(Z, X))-Z(g(X, Y)) \\
& -g(X,[Y, Z])+g(Y,[Z, X])+g(Z,[X, Y]) .
\end{aligned}
$$

Then Koszul's formula yields

$$
\begin{gathered}
\nabla_{e_{1}} e_{1}=-e_{3}, \nabla_{e_{1}} e_{2}=0, \nabla_{e_{1}} e_{3}=e_{1}, \\
\nabla_{e_{2}} e_{1}=0, \nabla_{e_{2}} e_{2}=e_{3}, \nabla_{e_{2}} e_{3}=e_{2}, \\
\nabla_{e_{3}} e_{1}=e_{1}, \nabla_{e_{3}} e_{2}=e_{2}, \nabla_{e_{3}} e_{3}=0 .
\end{gathered}
$$

These results shows that the manifold satisfies

$$
\nabla_{X} \xi=X-\eta(X) \xi
$$

for $\xi=e_{3}$. Hence the manifold under consideration is para-Kenmotsu manifold of dimension three.

A para-Kenmotsu manifold is said to be an η-Einstein manifold if its Ricci tensor S is of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{17}
\end{equation*}
$$

for the vector fields X, Y, where a and b are functions on M^{n}.

3 Generalized pseudo-projective curvature tensor of para-Kenmotsu manifold

In this section, we give a brief account of generalized pseudo-projective curvature tensor of para-Kenmotsu manifold and study various geometric properties of it.

The pseudo-projective curvature tensor of para-Kenmotsu manifold M^{n} is given by the following relation:

$$
\begin{align*}
\bar{P}(X, Y, U)= & a R(X, Y, U)+b[S(Y, U) X-S(X, U) Y] \\
& -\frac{r}{n}\left(\frac{a}{n-1}+b\right)[g(Y, U) X-g(X, U) Y], \tag{18}
\end{align*}
$$

On generalized pseudo-projective curvature tensor ...

Also, the type $(0,4)$ tensor field ${ }^{\prime} \bar{P}$ is given by

$$
\begin{array}{r}
\bar{P}(X, Y, U, V)=a^{\prime} R(X, Y, U, V)+b[S(Y, U) g(X, V)-S(X, U) \\
g(Y, V)]-\frac{r}{n}\left(\frac{a}{n-1}+b\right)[g(Y, U) g(X, V)-g(X, U) g(Y, V)] \tag{19}
\end{array}
$$

where

$$
' \bar{P}(X, Y, U, V)=g(\bar{P}(X, Y, U), V)
$$

and

$$
{ }^{\prime} R(X, Y, U, V)=g(R(X, Y, U), V)
$$

for the arbitrary vector fields X, Y, U, V.
Differentiating covariantly with respect to W in equation (18), we get

$$
\begin{array}{r}
\left.\left.\left(\nabla_{W} \bar{P}\right)(X, Y) U\right)=a\left(\nabla_{W} R\right)(X, Y) U\right)+b\left[\left(\nabla_{W} S\right)(Y, U) X\right. \\
\left.-\left(\nabla_{W} S\right)(X, U) Y\right]-\frac{d r(W)}{n}\left(\frac{a}{n-1}+b\right)[g(Y, U) X-g(X, U) Y] . \tag{20}
\end{array}
$$

Divergence of pseudo-projective curvature tensor in equation (18) is given by

$$
\begin{array}{r}
(\operatorname{div} \bar{P})(X, Y) U)=a(\operatorname{div} R)(X, Y) U)+b\left[\left(\nabla_{X} S\right)(Y, U)\right. \\
\left.-\left(\nabla_{Y} S\right)(X, U)\right]-(\operatorname{divr})\left[\frac{a+b(n-1)}{n(n-1)}\right][g(Y, U) \operatorname{div}(X) \tag{21}\\
-g(X, U) \operatorname{div}(Y)] .
\end{array}
$$

But

$$
\begin{equation*}
(\operatorname{div} R)(X, Y) U)=\left(\nabla_{X} S\right)(Y, U)-\left(\nabla_{Y} S\right)(X, U) \tag{22}
\end{equation*}
$$

From equations (21) and (22), we have

$$
\begin{align*}
&(\operatorname{div} \bar{P})(X, Y) U=(a+b)\left[\left(\nabla_{X} S\right)(Y, U)-\left(\nabla_{Y} S\right)(X, U)\right]-(\operatorname{divr}) \\
& {\left[\frac{a+b(n-1)}{n(n-1)}\right][g(Y, U) \operatorname{div}(X)-g(X, U) \operatorname{div}(Y)] . } \tag{23}
\end{align*}
$$

Definition 2. An almost paracontact structure (ϕ, ξ, η, g) is said to be locally pseudo-projectively symmetric if

$$
\begin{equation*}
\left(\nabla_{W} \bar{P}\right)(X, Y, U)=0 \tag{24}
\end{equation*}
$$

for all vector fields $X, Y, U, W \in T_{p} M^{n}$.
Definition 3. An almost paracontact structure (ϕ, ξ, η, g) is said to be locally pseudo-projectively ϕ-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} \bar{P}\right)(X, Y, U)\right)=0 \tag{25}
\end{equation*}
$$

for all vector fields X, Y, U, W orthogonal to ξ.

Definition 4. An almost paracontact structure (ϕ, ξ, η, g) is said to be pseudoprojectively ϕ-recurrent if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} \bar{P}\right)(X, Y, U)\right)=A(W) \bar{P}(X, Y, U) \tag{26}
\end{equation*}
$$

for arbitrary vector fields X, Y, U, W.
If the 1 -form A vanishes, then the manifold reduces to a locally pseudoprojectively ϕ-symmetric.

A new generalized $(0,2)$ symmetric tensor 2 , defined by Mantica and Suh [9], is given by the following relation

$$
\begin{equation*}
z(X, Y)=S(X, Y)+\psi g(X, Y) \tag{27}
\end{equation*}
$$

where ψ is an arbitrary scalar function.
From equation (27), we have

$$
\begin{equation*}
z(\phi X, \phi Y)=S(\phi X, \phi Y)+\psi g(\phi X, \phi Y), \tag{28}
\end{equation*}
$$

which, on using equations (7) and (13), gives

$$
\begin{equation*}
z(\phi X, \phi Y)=[\psi-(n-1)][-g(X, Y)+\eta(X) \eta(Y)] . \tag{29}
\end{equation*}
$$

From equation (19), we have

$$
\begin{gather*}
\bar{P}(X, Y, U, V)=a^{\prime} R(X, Y, U, V)+b[S(Y, U) g(X, V)-S(X, U) \\
g(Y, V)]-\frac{r}{n}\left(\frac{a}{n-1}+b\right)[g(Y, U) g(X, V)-g(X, U) g(Y, V)] . \tag{30}
\end{gather*}
$$

From equation (27) the above equation reduces to

$$
\begin{array}{r}
\bar{P}(X, Y, U, V)=a^{\prime} R(X, Y, U, V)+b[z(Y, U) g(X, V)-z(X, U) \\
g(Y, V)]-\frac{r}{n}\left(\frac{a}{n-1}+b\right)[g(Y, U) g(X, V)-g(X, U) g(Y, V)] \tag{31}\\
+b \psi[g(Y, V) g(X, U)-g(Y, U) g(X, V)]
\end{array}
$$

If we put

$$
\begin{array}{r}
\overline{\bar{P}}(X, Y, U, V)=a^{\prime} R(X, Y, U, V)+b[z(Y, U) g(X, V)-z(X, U) \\
\quad g(Y, V)]-\frac{r}{n}\left(\frac{a}{n-1}+b\right)[g(Y, U) g(X, V)-g(X, U) g(Y, V)] \tag{32}
\end{array}
$$

Then equation (31) reduces to

$$
\begin{align*}
\prime \overline{\bar{P}}(X, Y, U, V)=^{\prime} \bar{P}(X, Y, U, V)- & b \psi \tag{33}
\end{align*} \quad[g(Y, V) g(X, U), ~-g(X, V) g(Y, U)] .
$$

We call this new tensor ${ }^{\prime} \overline{\bar{P}}$ given in equation (32) as generalized pseudo-projective curvature tensor of para-Kenmotsu manifold.

If $\psi=0$, then from eqauation (33), we have

$$
\begin{equation*}
' \overline{\bar{P}}(X, Y, U, V)=^{\prime} \bar{P}(X, Y, U, V) \tag{34}
\end{equation*}
$$

If the scalar function ψ vanishes on para-Kenmotsu manifold, then the pseudoprojective curvature tensor and generalized pseudo-projective curvature tensor are identicle.

Theorem 1. Generalized pseudo-projective curvature tensor $\overline{\bar{P}}$ of para-Kenmotsu manifold is
(a) skew symmetric in first two slots.
(b) skew symmetric in last two slots.
(c) symmetric in pair of slots.

Proof. (a) From equation (33), we have

$$
\begin{align*}
\overline{\bar{P}}_{\bar{P}}(Y, X, U, V)=^{\prime} \bar{P}(Y, X, U, V)- & b \psi \tag{35}\\
& -g(Y(X, V) g(Y, U) g(X, U)] .
\end{align*}
$$

Now adding equations (33) and (35) and using the following

$$
' \bar{P}(X, Y, U, V)+{ }^{\prime} \bar{P}(Y, X, U, V)=0
$$

we get

$$
\prime \overline{\bar{P}}(X, Y, U, V)=-^{\prime} \overline{\bar{P}}(Y, X, U, V)
$$

which shows that generalized pseudo-projective curvature tensor $/ \overline{\bar{P}}$ is skew symmetric in first two slots.
(b) Again from equation (33), we have

$$
\begin{align*}
\prime \overline{\bar{P}}(X, Y, V, U)=^{\prime} \bar{P}(X, Y, V, U)- & b \psi[g(X, V) g(Y, U) \tag{36}\\
& -g(Y, V) g(X, U)] .
\end{align*}
$$

Now, adding (33) and (36) and using the following

$$
' \bar{P}(X, Y, U, V)+{ }^{\prime} \bar{P}(X, Y, V, U)=0
$$

we obtain

$$
\prime \overline{\bar{P}}(X, Y, U, V)=-\overline{\bar{P}}(X, Y, V, U)
$$

which shows that generalized pseudo-projective curvature tensor ${ }^{\prime} \overline{\bar{P}}$ is skew symmetric in last two slots.
(c) From equation (33), interchanging pair of slots X by U and Y by V, we have

$$
\begin{align*}
& \prime \overline{\bar{P}}(U, V, X, Y)=^{\prime} \bar{P}(U, V, X, Y)-b \psi[g(V, Y) g(U, X) \tag{37}\\
&-g(U, Y) g(V, X)] .
\end{align*}
$$

Now, using equations (33) and (37) and using the following

$$
' \bar{P}(X, Y, U, V)=^{\prime} \bar{P}(U, V, X, Y)
$$

we get

$$
' \overline{\bar{P}}(X, Y, U, V)=^{\prime} \overline{\bar{P}}(U, V, X, Y)
$$

which shows that generalized pseudo-projective curvature tensor ${ }^{\prime} \overline{\bar{P}}$ is symmetric in pair of slots.

Theorem 2. Generalized pseudo-projective curvature tensor of para-Kenmotsu manifold satisfies Bianchi's first identity.

Proof. From equation (33), we have

$$
\begin{equation*}
\overline{\bar{P}}(X, Y, U)=\bar{P}(X, Y, U)-b \psi[g(X, U) Y-g(Y, U) X)] \tag{38}
\end{equation*}
$$

Writing two more equations by the cyclic permutations of X, Y and U in the above equation, we get

$$
\begin{equation*}
\overline{\bar{P}}(Y, U, X)=\bar{P}(Y, U, X)-b \psi[g(Y, X) U-g(U, X) Y)] \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\bar{P}}(U, X, Y)=\bar{P}(U, X, Y)-b \psi[g(U, Y) X-g(X, Y) U)] . \tag{40}
\end{equation*}
$$

Adding equations (38), (39) and (40) with the fact that

$$
\bar{P}(X, Y, U)+\bar{P}(Y, U, X)+\bar{P}(U, X, Y)=0
$$

we get

$$
\overline{\bar{P}}(X, Y, U)+\overline{\bar{P}}(Y, U, X)+\overline{\bar{P}}(U, X, Y)=0
$$

which shows that generalized pseudo-projective curvature tensor of para-Kenmotsu manifold satisfies Bianchi's first identity.

Theorem 3. Generalized pseudo-projective curvature tensor of para-Kenmotsu manifold satisfies the following identites:

$$
\begin{array}{r}
(a) \overline{\bar{P}}(\xi, Y, U)=-\overline{\bar{P}}(Y, \xi, U)=g(Y, U)\left[-a-\frac{r}{n}\left(\frac{a}{n-1}+b\right)+b \psi\right] \\
\xi+\left[a+b(n-1)+\frac{r}{n}\left(\frac{a}{n-1}+b\right)-b \psi\right] \eta(U) Y \\
+b S(Y, U) \xi, \\
(b) \overline{\bar{P}}(X, Y, \xi)=\left[a+b(n-1)+\frac{r}{n}\left(\frac{a}{n-1}+b\right)-b \psi\right][\eta(X) Y \\
-\eta(Y) X] \\
(c) \eta(\overline{\bar{P}}(U, V, Y))=\left[a+\frac{r}{n}\left(\frac{a}{n-1}+b\right)-b \psi\right][g(U, Y) \eta(V) \tag{43}\\
-g(V, Y) \eta(U)]+b[S(V, Y) \eta(U)-S(U, Y) \eta(V)]
\end{array}
$$

Proof. (a) Putting $X=\xi$ in equation (38), we have

$$
\overline{\bar{P}}(\xi, Y, U)=\bar{P}(\xi, Y, U)-b \psi[g(\xi, U) Y-g(Y, U) \xi],
$$

which on using equations $(6),(12),(14),(18)$, gives the desired result.
(b) Again putting $U=\xi$ in equation (38), we have

$$
\overline{\bar{P}}(X, Y, \xi)=\bar{P}(X, Y, \xi)-b \psi[g(X, \xi) Y-g(Y, \xi) X] .
$$

With the use of equations (6), (11), (14), (18) in the above equation, we obtain the required result.
(c) Taking innner product with ξ of equation (38), we have

$$
\eta(\overline{\bar{P}}(U, V, Y))=\eta(\bar{P}(U, V, Y))-b \psi[g(U, Y) \eta(V)-g(V, Y) \eta(U)],
$$

which on using equations (6), (10), (18), gives the desired result.

4 Generalized pseudo-projectively semi-symmetric para-Kenmotsu manifold

Definition 5. A Para-Kenmotsu manifold is said to be semi-symmetric [23] if it satisfies the condition

$$
\begin{equation*}
R(X, Y) \cdot R=0 \tag{44}
\end{equation*}
$$

where $R(X, Y)$ is considered as the derivation of the tensor algebra at each point of the manifold.

Definition 6. A para-Kenmotsu manifold is said to be generalized pseudoprojectively semi-symmetric if it satisfies the condition

$$
\begin{equation*}
R(X, Y) \cdot \overline{\bar{P}}=0 \tag{45}
\end{equation*}
$$

where $\overline{\bar{P}}$ is generalized pseudo-projective curvature tensor and $R(X, Y)$ is considered as the derivation of the tensor algebra at each point of the manifold.

Theorem 4. A generalized pseudo-projectively semi-symmetric para-Kenmotsu manifold is an η-Einstein manifold.

Proof. Consider

$$
(R(\xi, X) \cdot \overline{\bar{P}})(U, V, Y)=0
$$

for any $X, Y, U, V \in T_{P} M$, where $\overline{\bar{P}}$ is generalized Pseudo-projective curvature tensor.
Then we have

$$
\begin{array}{r}
R(\xi, X, \overline{\bar{P}}(U, V, Y))-\overline{\bar{P}}(R(\xi, X, U), V, Y) \tag{46}\\
-\overline{\bar{P}}(U, R(\xi, X, V), Y)-\overline{\bar{P}}(U, V, R(\xi, X, Y)=0
\end{array}
$$

In view of equation (12) the above equation takes the form

$$
\begin{array}{r}
\eta(\overline{\bar{P}}(U, V, Y)) X-^{\prime} \overline{\bar{P}}(U, V, Y, X) \xi-\eta(U) \overline{\bar{P}}(X, V, Y)+g(X, U) \\
\overline{\bar{P}}(\xi, V, Y)-\eta(V) \overline{\bar{P}}(U, X, Y)+g(X, V) \overline{\bar{P}}(U, \xi, Y)-\eta(Y) \overline{\bar{P}}(U, V, X) \\
+g(X, Y) \overline{\bar{P}}(U, V, \xi)=0 .
\end{array}
$$

Taking inner product of above eqquation with ξ and using equations (5), (33), (41), (42), (43), we get

$$
\begin{array}{r}
-\bar{P}(U, V, Y, X)+b \psi[g(X, V) g(Y, U)-g(X, U) g(Y, V)]-b g(X, V) \\
S(Y, U)-\left[a+\frac{r}{n}\left(\frac{a}{n-1}+b\right)-b \psi\right][g(X, U) \eta(Y) \eta(V)-g(X, V) \\
\eta(Y) \eta(U)]-\left[a+b(n-1)+\frac{r}{n}\left(\frac{a}{n-1}+b\right)-b \psi\right] g(X, V) \eta(Y) \eta(U) \\
+b g(X, U) S(Y, V)-b[S(X, V) \eta(U) \eta(Y)-S(X, U) \eta(V) \eta(Y)] \\
+g(X, U) \eta(Y) \eta(V)\left[a+b(n-1)+\frac{r}{n}\left(\frac{a}{n-1}+b\right)-b \psi\right] \\
-g(X, V) g(Y, U)\left[-a-\frac{r}{n}\left(\frac{a}{n-1}+b\right)+b \psi\right]+g(X, U) g(Y, V) \\
{\left[-a-\frac{r}{n}\left(\frac{a}{n-1}+b\right)+b \psi\right]=0 .}
\end{array}
$$

On generalized pseudo-projective curvature tensor ...

By virtue of equation (19), the above equation reduces to

$$
\begin{array}{r}
-a^{\prime} R(U, V, Y, X)+\frac{r}{n}\left(\frac{a}{n-1}+b\right)[g(Y, V) g(U, X)-g(Y, U) \\
g(V, X)]-\left[a+\frac{r}{n}\left(\frac{a}{n-1}+b\right)-b \psi\right][g(U, X) \eta(Y) \eta(V) \\
-g(V, X) \eta(Y) \eta(U)]+\left[a+b(n-1)+\frac{r}{n}\left(\frac{a}{n-1}+b\right)-b \psi\right] \\
g(X, U) \eta(Y) \eta(V)-\left[a+b(n-1)+\frac{r}{n}\left(\frac{a}{n-1}+b\right)-b \psi\right] \\
g(X, V) \eta(Y) \eta(U)-g(X, V) g(Y, U)\left[-a-\frac{r}{n}\left(\frac{a}{n-1}+b\right)+b \psi\right] \\
+g(X, U) g(Y, V)\left[-a-\frac{r}{n}\left(\frac{a}{n-1}+b\right)+b \psi\right] \\
-b[S(X, V) \eta(U) \eta(Y)-S(X, U) \eta(V) \eta(Y)] \\
+b \psi[g(Y, U) g(X, V)-g(Y, V) g(X, U)]=0 .
\end{array}
$$

Let $\left\{e_{i}: i=1,2 \ldots . . n\right\}$ be an orthonormal basis. Putting $X=U=e_{i}$ in the above equation and taking summation over i, we get

$$
S(Y, V)=-(n-1) g(Y, V)+\frac{2 n b}{a} \eta(Y) \eta(V)
$$

This shows that generalized pseudo-projectively semi-symmetric paraKenmotsu manifold is an η-Einstein manifold.

5 Generalized pseudo-projectively Ricci semisymmetric para-Kenmotsu manifold

Definition 7. Para-Kenmotsu manifold M is said to be Ricci semi-symmetric [10] if the condition

$$
\begin{equation*}
R(X, Y) \cdot S=0 \tag{47}
\end{equation*}
$$

holds for all $X, Y \in T_{p} M$.

Definition 8. Para-Kenmotsu manifold is said to be generalized pseudo-projectively Ricci semi-symmetric if the condition

$$
\begin{equation*}
\overline{\bar{P}}(X, Y) \cdot S=0 \tag{48}
\end{equation*}
$$

holds for all X, Y, where $\overline{\bar{P}}$ is generalized pseudo-projective curvature tensor of para-Kenmotsu manifold.

Theorem 5. A generalized pseudo-projectively Ricci semi-symmetric para-Kenmotsu manifold is either Einstein manifold or $\psi=\frac{a n(n-1)+r a+b r(n-1)}{b n(n-1)}$ on it.

Proof. Consider

$$
(\overline{\bar{P}}(\xi, X) \cdot S)(U, V)=0
$$

which gives

$$
S(\overline{\bar{P}}(\xi, X, U), V)+S(U, \overline{\bar{P}}(\xi, X, V))=0
$$

Using equations (14) and (41) in the above equation, we get

$$
\begin{aligned}
0 & =\left[a+\frac{r}{n}\left(\frac{a}{n-1}+b\right)-b \psi\right][S(X, V) \eta(U)+S(X, U) \eta(V)] \\
& -(n-1)\left[-a-\frac{r}{n}\left(\frac{a}{n-1}+b\right)+b \psi\right][g(X, U) \eta(V)+g(X, V) \eta(U)]
\end{aligned}
$$

Putting $U=\xi$ in the above equation and using (5), (6) and (14), we get

$$
\left[a+\frac{r}{n}\left(\frac{a}{n-1}+b\right)-b \psi\right][S(X, V)+(n-1) g(X, V)]=0,
$$

which gives either

$$
\psi=\frac{a n(n-1)+r a+b r(n-1)}{b n(n-1)}
$$

or

$$
S(X, V)=-(n-1) g(X, V)
$$

This shows that generalized pseudo-projectively Ricci semi-symmetric para-Kenmotsu manifold is an Einstein manifold.

6 Generalized pseudo-projectively ϕ-symmetric paraKenmotsu manifold

Definition 9. A para-Kenmotsu manifold M^{n} is said to be locally ϕ-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y, U)\right)=0 \tag{49}
\end{equation*}
$$

for all vector fields X, Y, U, W orthogonal to ξ.
This notion was introduced by Takahashi for Sasakian manifolds [24].
Definition 10. A para-Kenmotsu manifold is said to be ϕ-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y, U)\right)=0, \tag{50}
\end{equation*}
$$

for arbitrary vector fields X, Y, U, W.
This notion was also introduced by Takahashi for Sasakian manifold [25]. Also analogous to these definitons, we define

On generalized pseudo-projective curvature tensor ...

Definition 11. A para-Kenmotsu manifold M^{n} is said to be generalized pseudoprojective locally ϕ-symmetric para-Kenmotsu manifold if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} \overline{\bar{P}}\right)(X, Y, U)\right)=0 \tag{51}
\end{equation*}
$$

for all vector fields X, Y, U, W orthogonal to ξ.
And also
Definition 12. A para-Kenmotsu manifold M^{n} is said to be generalized pseudoprojectively ϕ-symmetric para-Kenmotsu manifold if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} \overline{\bar{P}}\right)(X, Y, U)\right)=0 \tag{52}
\end{equation*}
$$

for arbitary vector fields X, Y, U, W.
Theorem 6. A generalized pseudo projectively ϕ-symmetric para Kenmotsu manifold is an Einstein manifold.

Proof. Taking covariant derivative of equation (38) with respect to vector field W, we obtain

$$
\begin{equation*}
\left(\nabla_{W} \overline{\bar{P}}\right)(X, Y, U)=\left(\nabla_{W} \bar{P}\right)(X, Y, U)-b d r(\psi)[g(X, U) Y-g(Y, U) X] . \tag{53}
\end{equation*}
$$

Using equation (20) in the above equation, we get

$$
\begin{array}{r}
\left(\nabla_{W} \overline{\bar{P}}\right)(X, Y, U)=a\left(\nabla_{W} R\right)(X, Y, U)-b d r(\psi)[g(X, U) Y \\
-g(Y, U) X]+b\left[\left(\nabla_{W} S\right)(Y, U) X-\left(\nabla_{W} S\right)(X, U) Y\right]-\frac{d r(W)}{n} \tag{54}\\
\left(\frac{a}{n-1}+b\right)[g(Y, U) X-g(X, U) Y]
\end{array}
$$

Assume that the manifold is generalized pseudo-projectively ϕ-symmetric, then from equation (52), we have

$$
\phi^{2}\left(\left(\nabla_{W} \overline{\bar{P}}\right)(X, Y, U)\right)=0
$$

which on using equation (2), gives

$$
\begin{equation*}
\left(\nabla_{W} \overline{\bar{P}}\right)(X, Y, U)=\eta\left(\left(\nabla_{W} \overline{\bar{P}}\right)(X, Y, U)\right) \xi \tag{55}
\end{equation*}
$$

Using equation (54) in above equation, we get

$$
\begin{array}{r}
a\left(\nabla_{W} R\right)(X, Y, U)-b d r(\psi)[g(X, U) Y-g(Y, U) X]+b \\
{\left[\left(\nabla_{W} S\right)(Y, U) X-\left(\nabla_{W} S\right)(X, U) Y\right]-\frac{d r(W)}{n}\left(\frac{a}{n-1}+b\right)} \\
{[g(Y, U) X-g(X, U) Y]=a \eta\left(\left(\nabla_{W} R\right)(X, Y, U)\right) \xi-b d r(\psi)} \tag{56}\\
{[g(X, U) \eta(Y)-g(Y, U) \eta(X)] \xi+b\left[\left(\nabla_{W} S\right)(Y, U) \eta(X)\right.} \\
\left.-\left(\nabla_{W} S\right)(X, U) \eta(Y)\right] \xi-\frac{d r(W)}{n}\left(\frac{a}{n-1}+b\right) \\
{[g(Y, U) \eta(X)-g(X, U) \eta(Y)] \xi,}
\end{array}
$$

Taking inner product of the above equation with V, we get

$$
\begin{array}{r}
a g\left(\left(\nabla_{W} R\right)(X, Y, U), V\right)-b d r(\psi)[g(X, U) g(Y, V)-g(Y, U) \\
g(X, V)]+b\left[\left(\nabla_{W} S\right)(Y, U) g(X, V)-\left(\nabla_{W} S\right)(X, U) g(Y, V)\right] \\
-\frac{d r(W)}{n}\left(\frac{a}{n-1}+b\right)[g(Y, U) g(X, V)-g(X, U) g(Y, V)] \\
=a \eta\left(\left(\nabla_{W} R\right)(X, Y, U)\right) \eta(V)-b d r(\psi)[g(X, U) \eta(Y) \eta(V) \tag{57}\\
-g(Y, U) \eta(X) \eta(V)]+b\left[\left(\nabla_{W} S\right)(Y, U) \eta(X) \eta(V)\right. \\
\left.-\left(\nabla_{W} S\right)(X, U) \eta(Y) \eta(V)\right]-\frac{d r(W)}{n}\left(\frac{a}{n-1}+b\right) \\
{[g(Y, U) \eta(X) \eta(V)-g(X, U) \eta(Y) \eta(V)] .}
\end{array}
$$

Putting $X=V=e_{i}$ and taking summation over i, we obtaion

$$
\begin{array}{r}
a\left(\nabla_{W} S\right)(Y, U)+b\left[n\left(\nabla_{W} S\right)(Y, U)-\left(\nabla_{W} S\right)(Y, U)\right] \\
-\frac{d r(W)}{n}\left(\frac{a}{n-1}+b\right)[n g(Y, U)-g(Y, U)] \\
-b d r(\psi)[g(Y, U)-n g(Y, U)]-a \eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y, U\right)\right) \eta\left(e_{i}\right) \tag{58}\\
-b\left[\left(\nabla_{W} S\right)(Y, U)-\left(\nabla_{W} S\right)\left(e_{i}, U\right) \eta(Y) \eta\left(e_{i}\right)+\frac{d r(W)}{n}\left(\frac{a}{n-1}+b\right)\right. \\
{[g(Y, U)-\eta(Y) \eta(U)]+b d r(\psi)[\eta(U) \eta(Y)-g(Y, U)]=0,}
\end{array}
$$

Taking $U=\xi$ in the above equation, we have

$$
\begin{array}{r}
a\left(\nabla_{W} S\right)(Y, \xi)+b(n-1)\left(\nabla_{W} S\right)(Y, \xi)-\frac{d r(W)}{n}\left(\frac{a}{n-1}+b\right) \\
(n-1) \eta(Y)-a \eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y, \xi\right)\right) \eta\left(e_{i}\right)+b d r(\psi)(n-1) \eta(Y) \tag{59}\\
-b\left[\left(\nabla_{W} S\right)(Y, \xi)-\left(\nabla_{W} S\right)\left(e_{i}, \xi\right) \eta\left(e_{i}\right) \eta(Y)\right]=0 .
\end{array}
$$

Now

$$
\begin{equation*}
\eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y, \xi\right) \eta\left(e_{i}\right)=g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y, \xi\right), \xi\right) g\left(e_{i}, \xi\right)\right. \tag{60}
\end{equation*}
$$

Also

$$
\begin{align*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y, \xi\right), \xi\right) & =g\left(\nabla_{W} R\left(e_{i}, Y, \xi\right), \xi\right)-g\left(R\left(\nabla_{W} e_{i}, Y, \xi\right), \xi\right) \\
& -g\left(R\left(e_{i}, \nabla_{W} Y, \xi\right), \xi\right)-g\left(R\left(e_{i}, Y, \nabla_{W} \xi\right), \xi\right) . \tag{61}
\end{align*}
$$

Since $\left\{e_{i}\right\}$ is an orthonormal basis, so $\nabla_{X} e_{i}=0$ and using equation (11), we get

$$
g\left(R\left(e_{i}, \nabla_{W} Y, \xi\right), \xi\right)=0
$$

Since

$$
g\left(R\left(e_{i}, Y, \xi\right), \xi\right)+g\left(R(\xi, \xi, Y), e_{i}\right)=0
$$

Therefore, we have

$$
g\left(\nabla_{W} R\left(e_{i}, Y, \xi\right), \xi\right)+g\left(R\left(e_{i}, Y, \xi\right), \nabla_{W} \xi\right)=0
$$

On generalized pseudo-projective curvature tensor ...

Using this fact in equation (61), we get

$$
\begin{equation*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y, \xi\right), \xi\right)=0 \tag{62}
\end{equation*}
$$

Using equation (62) in (59), we have

$$
\begin{array}{r}
{\left[\frac{d r(W)}{n}\left(\frac{a}{n-1}+b\right)(n-1) \eta(Y)-b d r(\psi)(n-1) \eta(Y)\right]} \\
{\left[\frac{1}{a+b(n-1)-b}\right]=\left(\nabla_{W} S\right)(Y, \xi),} \tag{63}
\end{array}
$$

Taking $Y=\xi$ in above equation and using equations (5) and (14), we get

$$
\begin{equation*}
d r(\psi)=\frac{d r(W)}{b n}\left(\frac{a}{n-1}+b\right), \tag{64}
\end{equation*}
$$

which shows that r is constant. Now we have

$$
\left(\nabla_{W} S\right)(Y, \xi)=\nabla_{W} S(Y, \xi)-S\left(\nabla_{W} Y, \xi\right)-S\left(Y, \nabla_{W} \xi\right)
$$

Then by using (8), (9), (14) in the above equation, it follows that

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, \xi)=-S(Y, W)-(n-1) g(Y, W) \tag{65}
\end{equation*}
$$

Thus from equations (63), (64) and (65), we obtain

$$
\begin{equation*}
S(Y, W)=-(n-1) g(Y, W), \tag{66}
\end{equation*}
$$

which shows that M^{n} is an Einstein manifold.

References

[1] Adati, T. and Miyazava, T., On para-contact Riemannian manifolds, Tru Math. 13 (1977), no. 2, 27-39.
[2] Blaga, A.M., η-Ricci solitions on para- Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), 1-13.
[3] Cappelletti-Montano, B., Kupeli Erken, I. and Murathan, C., Nullity conditions in paracontact geometry, Differ. Geom. Appl. 30 (2012), 665-693.
[4] Doğru, Y., Hypersurfaces satisfying some curvature conditions on pseudoprojective curvature tensor in the semi-Euclidean space, Differ. Geom. Dyn. Syst. 2 (2014), 99-105.
[5] Jaiswal, J.P. and Ojha, R.H., On weak pseudo-projective symmetric manifolds, Differ. Geom. Dyn. Syst. 12 (2010), 83-94.
[6] Kaneyuki, S. and Williams, F.L., Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173-187.
[7] Kupeli Erken, I., Yamabe solitons on three-dimensional normal almost paracontact metric manifolds, Periodica Math. Hungarica 80 (2020), 172-184.
[8] Kupeli Erken, I. and Murathan, C., A complete study of three-dimensional paracontact (k, μ, ν)-spaces, Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 7, 1750106.
[9] Mantica, C.A., Suh, Y.J., Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Meth. Mod. Phys. 9 (2012), no. 1, 1250004.
[10] Majhi, P. and De, U.C., Classification of $N(k)$-contact metric manifolds satisfying certain curvature conditions, Acta Math. Univ. Comenianae 84 (2015), 167-178.
[11] Mallick, S., Suh, Y.J. and De, U.C., A spacetime with pseudo-projective curvature tensor, J. Math. Phys. 57 (2016), 062501-10.
[12] Maralabhavi, Y.B. and Shivaprasanna, G.S., On Pseudo-Projective Curvature Tensor in LP-Sasakian Manifolds, International Mathematical Forum 7 (2012), no. 23, 1121-1128.
[13] Mishra, R. S. and Pandey, S. N., Semi-symmetric metric connections in an almost contact manifold, Indian J. Pure Appl. Math. 9(6) (1978), 570-580.
[14] Nagaraja, H.G. and Somashekhara, G., On pseudo-projective curvature tensor in Sasakian manifolds, Int. J. Contemp. Math. Sciences 6 (2011), no. 27, 1319-1328.
[15] Narain, D., Prakash, A. and Prasad, B., A pseudo-projective curvature tensor on a Lorentzian para-Sasakian manifold, An. Ştiinţ. Univ. Al.I. Cuza Iaşi. Mat. (N.S.) 55 (2009), 275-284.
[16] Olszak, Z., The Schouten-van Kampen affine connection adapted to an almost (para) contact metric structure, Publ. Inst. Math. Nouv. sér. 94(108) (2013), 31-42.
[17] Pal, S.K., Pandey, M.K. and Singh, R.N., On a type of projective semisymmetric connection, Int. J. of Anal. and Appl. (N.S.) 7 (2015), no. 2, 153-161.
[18] Prasad, B., On pseudo-projective curvature tensor on Riemannian manifold, Bull. Cal. Math. Soc. 94 (2002), no. 3, 163-166.
[19] Sato, I., On a structure similar to the almost contact structure, Tensor, (N.S.) 30 (1976), 219-224.
[20] Sardar A. and De, U.C., η - Ricci solitions on para- Kenmotsu manifolds, Differential Geometry Dynamical Systems 22 (2020), 218-228.
[21] Singh, R.N., Pandey, S.K. and Pandey G., On a type of Kenmotsu manifold, Bulletin of Mathematical Analysis and Applications 4 (2012), no. 1, 117-132.
[22] Singh, R.N., Pandey, M.K. and Gautam, D., On nearly quasi Einstein manifold, Int. Journal of Math. Analysis 5 (2011), no. 36, 1767-1773.
[23] Szabo, Z.I., Structure theorem on Riemannian space satisfying $R(X, Y) \cdot R=$ 0. I. The local version, J. Diff. Geom. 17 (1982), 531-582.
[24] Takahashi, T., Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. J. 21 (1969), no. 2, 271-290.
[25] Takahashi, T., Sasakian ϕ-symmetric spaces, Tohoku Math. J. 29 (1977), no. 1, 91-113.
[26] Zamkovoy, S., Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom. 36 (2009), 37-60.

[^0]: ${ }^{1}$ Department of Mathematics, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh 462033, India, e-mail: anil_goyal03@rediffmail.com
 ${ }^{2}$ Department of Mathematics, Govt. Tulsi College, Anuppur, Madhya Pradesh 484224, India, e-mail: math.giteshwari@gmail.com
 ${ }^{3}$ Department of Mathematics, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh 462033, India, e-mail: mkp_apsu@rediffmail.com
 ${ }^{4 *}$ Corresponding author, Department of Mathematics, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh 462033, India, e-mail: teerathramsgs@gmail.com

