INITIAL VALUE PROBLEMS FOR CAPUTO-FABRIZIO IMPLICIT FRACTIONAL DIFFERENTIAL EQUATIONS IN b-METRIC SPACES

Saïd ABBAS ${ }^{*, 1}$, Mouffak BENCHOHRA ${ }^{2}$, and Salim KRIM ${ }^{3}$

Abstract

This article deals with some existence results for some classes of CaputoFabrizio implicit fractional differential equations in b-metric spaces with initial conditions. The results are based on some fixed point theorems. We illustrate our results by some examples in the last section.

2000 Mathematics Subject Classification: 26A33.
Key words: Fractional differential equation, mixed Caputo-Fabrizio integral of fractional order, Caputo-Fabrizio fractional derivative, solution, initial conditions, fixed point.

1 Introduction

Fractional calculus has sparked the interest from researchers ever since its beginning. Fractional differential equations arise from a variety of applications, in various areas such as, applied sciences, physics, chemistry, biology, etc. [1, 5, $6,18,21,24,25]$.

In 2015, Caputo an Fabrizio published a new paper [12] proposing a new fractional derivative with a non-singular kernel. Next, another one by Losada and Nieto [19] discussing some properties of the so-called Caputo-Fabrizio fractional derivative. Fractional differential equations involving this new derivative have been developed and studied by many authors; see $[2,3,9,10,11,17,22]$, and the references therein.

[^0]The notion of b-metric was proposed by Czerwik [14, 15]. Following these initial papers, the existence fixed point for the various classes of operators in the setting of b-metric spaces have been investigated extensively; see [13, 16, 20, 23], and related references therein.

Implicit fractional differential equations were studied in several papers. We mention the monograph [1] and the papers [4, 22]. In this paper, we investigate the existence and uniqueness of solutions for the following class of initial value problems of Caputo-Fabrizio fractional differential equations

$$
\left\{\begin{array}{l}
\left({ }^{C F} D_{0}^{r} u\right)(t)=f\left(t, u(t),\left({ }^{C F} D_{0}^{r} u\right)(t)\right) ; t \in I:=[0, T], \tag{1}\\
u(0)=u_{0},
\end{array}\right.
$$

where $T>0, f: I \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a given continuous function, ${ }^{C F} D_{0}^{r}$ is the Caputo-Fabrizio fractional derivative of order $r \in(0,1)$, and $u_{0} \in \mathbb{R}$.

In the last section, we present some examples illustrating the presented results.

2 Preliminaries

Let $C(I)$ be the Banach space of all real continuous functions on I with the norm

$$
\|u\|_{\infty}=\sup _{t \in I}|u(t)| .
$$

By $L^{1}(I)$ we denote the Banach space of measurable functions $u: I \rightarrow \mathbb{R}$ with are Lebesgue integrable, equipped with the norm

$$
\|u\|_{L^{1}}=\int_{0}^{T}|u(t)| d t
$$

Definition 1. [12, 19] The Caputo-Fabrizio fractional integral of order $0<r<1$ for a function $h \in L^{1}(I)$ is defined by

$$
{ }^{C F} I^{r} h(\tau)=\frac{2(1-r)}{M(r)(2-r)} h(\tau)+\frac{2 r}{M(r)(2-r)} \int_{0}^{\tau} h(x) d x, \quad \tau \geq 0
$$

where $M(r)$ is normalization constant depending on r.
Definition 2. [12, 19] The Caputo-Fabrizio fractional derivative for a function $h \in C^{1}(I)$ of order $0<r<1$, is defined by

$$
{ }^{C F} D^{r} h(\tau)=\frac{(2-r) M(r)}{2(1-r)} \int_{0}^{\tau} \exp \left(-\frac{r}{1-r}(\tau-x)\right) h^{\prime}(x) d x ; \tau \in I .
$$

Note that $\left({ }^{C F} D^{r}\right)(h)=0$ if and only if h is a constant function.

Lemma 1. Let $h \in L^{1}(I, \mathbb{R})$. A function $u \in C(I)$ is a solution of problem

$$
\left\{\begin{array}{l}
\left({ }^{C F} D_{0}^{r} u\right)(t)=h(t) ; \quad t \in I:=[0, T] \tag{2}\\
u(0)=u_{0}
\end{array}\right.
$$

if and only if u satisfies the following integral equation

$$
\begin{gather*}
u(t)=C+a_{r} h(t)+b_{r} \int_{0}^{t} h(s) d s \tag{3}\\
a_{r}=\frac{2(1-r)}{(2-r) M(r)}, b_{r}=\frac{2 r}{(2-r) M(r)}, \\
C=u_{0}-a_{r} h(0)
\end{gather*}
$$

proof. Suppose that u satisfies (2). From Proposition 1 in [19]; the equation

$$
\left({ }^{C F} D_{0}^{r} u\right)(t)=h(t),
$$

implies that

$$
u(t)-u(0)=a_{r}(h(t)-h(0))+b_{r} \int_{0}^{t} h(s) d s .
$$

Thus from the initial condition $u(0)=u_{0}$, we get

$$
u(t)=u(0)+a_{r} h(t)-a_{r} h(0)+b_{r} \int_{0}^{t} h(s) d s
$$

So; we get (3).
Conversely, if u satisfies (3), then $\left({ }^{C F} D_{0}^{r} u\right)(t)=h(t)$; for $t \in I$, and $u(0)=u_{0}$.

We can conclude the following lemma:
Lemma 2. A function u is a solution of problem (1), if and only if u satisfies the following integral equation

$$
u(t)=c+a_{r} g(t)+b_{r} \int_{0}^{t} g(s) d s
$$

where $g \in X$, with $g(t)=f(t, u(t), g(t))$ and

$$
c=u_{0}-a_{r} g(0) .
$$

Definition 3. [7, 8] Let $c \geq 1$ and M be a set. A distance function $d: M \times M \rightarrow$ \mathbb{R}_{+}^{*} is called b-metric if for all $\mu, \nu, \xi \in M$, the following are fulfilled:

- (bM1) $d(\mu, \nu)=0$ if and only if $\mu=\nu$;
- (bM2) $d(\mu, \nu)=d(\nu, \mu)$;
- (bM3) $d(\mu, \xi) \leq c[d(\mu, \nu)+d(\nu, \xi)]$.

The tripled (M, d, c) is called a b-metric space.
Example 1. [7, 8] Let $d: C(I) \times C(I) \rightarrow \mathbb{R}_{+}^{*}$ be defined by

$$
d(u, v)=\left\|(u-v)^{2}\right\|_{\infty}:=\sup _{t \in I}|u(t)-v(t)|^{2} ; \text { for all } u, v \in C(I)
$$

It is clear that d is a b-metric with $c=2$.
Example 2. [7, 8] Let $X=[0,1]$ and $d: X \times X \rightarrow \mathbb{R}_{+}^{*}$ be defined by

$$
d(x, y)=\left|x^{2}-y^{2}\right| ; \text { for all } x, y \in X
$$

It is clear that d is not a metric, but it is easy to see that d is a b-metric space with $r \geq 2$.

Let Φ be the set of all increasing and continuous function $\phi: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}^{*}$ satisfying the property: $\phi(c \mu) \leq c \phi(\mu) \leq c \mu$, for $c>1$ and $\phi(0)=0$. We denote by \mathcal{F} the family of all nondecreasing functions $\lambda: \mathbb{R}_{+}^{*} \rightarrow\left[0, \frac{1}{c^{2}}\right)$ for some $c \geq 1$.

Definition 4. [7, 8] For a b-metric space (M, d, c), an operator $T: M \rightarrow M$ is called a generalized $\alpha-\phi-$ Geraghty contraction type mapping whenever there exists $\alpha: M \times M \rightarrow \mathbb{R}_{+}^{*}$, and some $L \geq 0$ such that for

$$
D(x, y)=\max \left\{d(x, y), d(x, T(x)), d(y, T(y)), \frac{d(x, T(y))+d(y, T(x))}{2 s}\right\}
$$

and

$$
N(x, y)=\min \{d(x, y), d(x, T(x)), d(y, T(y))\}
$$

we have

$$
\begin{equation*}
\alpha(\mu, \nu) \phi\left(c^{3} d(T(\mu), T(\nu)) \leq \lambda(\phi(D(\mu, \nu)) \phi(D(\mu, \nu))+L \psi(N(\mu, \nu)\right. \tag{4}
\end{equation*}
$$

for all $\mu, \nu \in M$, where $\lambda \in \mathcal{F}, \phi \psi \in \Phi$.
Remark 1. In the case when $L=0$ in Definition 4, and the fact that

$$
d(x, y) \leq D(x, y)
$$

for all $x, y \in M$, the inequality (4) becomes

$$
\begin{equation*}
\alpha(\mu, \nu) \phi\left(c^{3} d(T(\mu), T(\nu)) \leq \lambda(\phi(d(\mu, \nu)) \phi(d(\mu, \nu))\right. \tag{5}
\end{equation*}
$$

Definition 5. [7, 8] Let M be a non empty set, $T: M \rightarrow M$, and $\alpha: M \times M \rightarrow \mathbb{R}_{+}^{*}$ be a given mappings. We say that T is α-admissible if for all $\mu, \nu \in M$, we have

$$
\alpha(\mu, \nu) \geq 1 \Rightarrow \alpha(T(\mu), T(\nu)) \geq 1
$$

Definition 6. [7, 8] Let (M, d) be a b-metric space and let $\alpha: M \times M \rightarrow \mathbb{R}_{+}^{*}$ be a function. M is said to be α-regular if for every sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in M such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all n and $x_{n} \rightarrow x$ as $n \rightarrow \infty$, there exists a subsequence $\left\{x_{n(k)}\right\}_{k \in \mathbb{N}}$ of $\left\{x_{n}\right\}_{n}$ with $\alpha\left(x_{n(k)}, x\right) \geq 1$ for all k.

The following fixed point theorem plays a key role in the proof of our main results.

Theorem 1. [7, 8] Let (M, d) be a complete b-metric space and $T: M \rightarrow M$ be a generalized $\alpha-\phi-$ Geraghty contraction type mapping such that

- (i) T is α-admissible;
- (ii) there exists $\mu_{0} \in M$ such that $\alpha\left(\mu_{0}, T\left(\mu_{0}\right)\right) \geq 1$;
- (iii) either T is continuous or M is α-regular.

Then T has a fixed point. Moreover, if

- (iv) for all fixed points μ, ν of T, either $\alpha(\mu, \nu) \geq 1$ or $\alpha(\nu, \mu) \geq 1$,
then T has a unique fixed point.

3 Main Results

Let $(C(I), d, 2)$ be the complete b-metric space with $c=2$, such that d : $C(I) \times C(I) \rightarrow \mathbb{R}_{+}^{*}$ is given by:

$$
d(u, v)=\left\|(u-v)^{2}\right\|_{\infty}:=\sup _{t \in I}|u(t)-v(t)|^{2} .
$$

Then $(C(I), d, 2)$ is a b-metric space.
In this section, we are concerned with the existence results of problem (1).
Definition 7. By a solution of problem (1) we mean a function $u \in C(I)$ that satisfies

$$
\begin{equation*}
u(t)=c+a_{r} g(t)+b_{r} \int_{0}^{t} g(s) d s \tag{6}
\end{equation*}
$$

where $g \in C(I)$, with $g(t)=f(t, u(t), g(t))$ and

$$
c=u_{0}-a_{r} g(0) .
$$

The following hypotheses will be used in the sequel.
$\left(H_{1}\right)$ There exist $p: C(I) \times C(I) \rightarrow(0, \infty)$ and $q: I \rightarrow(0,1)$ such that for each $u, v, u_{1}, v_{1} \in C(I)$ and $t \in I$

$$
\left|f(t, u, v)-f\left(t, u_{1}, v_{1}\right)\right| \leq p(u, v)\left|u-u_{1}\right|+q(t)\left|v-v_{1}\right|,
$$

with

$$
\left\|1+2 a_{r} \frac{p(u, v)}{1-q *}+b_{r} \int_{0}^{t} \frac{p(u, v)}{1-q *} d s\right\|_{\infty}^{2} \leq \phi\left(\left\|(u-v)^{2}\right\|_{\infty}\right) .
$$

$\left(H_{2}\right)$ There exist $\phi \in \Phi$ and $\mu_{0} \in C(I)$ and a function $\theta: C(I) \times C(I) \rightarrow \mathbb{R}$, such that

$$
\theta\left(\mu_{0}(t), c+a_{r} g(t)+b_{r} \int_{0}^{t} g(s) d s\right) \geq 0
$$

where $g \in C(I)$, with $g(t)=f\left(t, \mu_{0}(t), g(t)\right)$,
$\left(H_{3}\right)$ For each $t \in I$, and $u, v \in C(I)$, we have:

$$
\theta(u(t), v(t)) \geq 0
$$

implies

$$
\theta\left(c+a_{r} g(t)+b_{r} \int_{0}^{t} g(s) d s, c+a_{r} h(t)+b_{r} \int_{0}^{t} h(s) d s\right) \geq 0
$$

where $g, h \in C(I)$, with

$$
g(t)=f(t, u(t), g(t)) \text { and } h(t)=f(t, v(t), h(t))
$$

$\left(H_{4}\right)$ If $u_{n n \in N} \subset C(I)$ with $u_{n} \rightarrow u$ and $\theta\left(u_{n}, u_{n+1}\right) \geq 1$, then

$$
\theta\left(u_{n}, u\right) \geq 1
$$

$\left(H_{5}\right)$ For all fixed solutions x, y of problem (1), either

$$
\theta(x(t), y(t)) \geq 0
$$

or

$$
\theta(y(t), x(t)) \geq 0
$$

Theorem 2. Assume that the hypotheses $\left(H_{1}\right)-\left(H_{4}\right)$ hold. Then the problem (1) has at least one solution defined on I. Moreover, if $\left(H_{5}\right)$ holds, then we get a unique solution.

Proof. Consider the operator $N: C(I) \rightarrow C(I)$ such that,

$$
(N u)(t)=c+a_{r} g(t)+b_{r} \int_{0}^{t} g(s) d s
$$

where $g \in C(I)$, with $g(t)=f(t, u(t), g(t))$ and

$$
c=u_{0}-a_{r} g(0)
$$

Using Lemma 2, it is clear that the fixed points of the operator N are solutions of our problem (1).

Let $\alpha: C(I) \times C(I) \rightarrow] 0, \infty)$ be the function defined by:

$$
\begin{cases}\alpha(u, v)=1 ; & \text { if } \theta(u(t), v(t)) \geq 0, t \in I, \\ \alpha(u, v)=0 ; & \text { eles } .\end{cases}
$$

First, we prove that N is a generalized α - ϕ-Geraghty operator: For any $u, v \in C(I)$ and each $t \in I$, we have

$$
|(N u)(t)-(N v)(t)| \leq\left|c_{g}-c_{h}\right|+a_{r}|g(t)-h(t)|+b_{r} \int_{0}^{t}|g(s)-h(s)| d s
$$

where $g, h \in C(I)$, with $g(t)=f(t, u(t), g(t))$ and $h(t)=f(t, v(t), h(t))$.
From $\left(H_{1}\right)$ we have

$$
\begin{aligned}
|g(t)-h(t)| & =|f(t, u(t), g(t))-f(t, v(t), h(t))| \\
& \leq p(u, v)|u(t)-v(t)|+q(t)|g(t)-h(t)| \\
& \leq p(u, v)\left(|u(t)-v(t)|^{2}\right)^{\frac{1}{2}}+q(t)|g(t)-h(t)| .
\end{aligned}
$$

Thus,

$$
\|g-h\|_{\infty} \leq \frac{p(u, v)}{1-q *}\left\|(u-v)^{2}\right\|_{\infty}^{\frac{1}{2}},
$$

where $q *=\sup _{t \in I}|q(t)|$.
Next, we have

$$
\begin{aligned}
|(N u)(t)-(N v)(t)| & \leq\left\|(u-v)^{2}\right\|_{\infty}^{\frac{1}{2}}+2 a_{r} \frac{p(u, v)}{1-q^{*}}\left\|(u-v)^{2}\right\|_{\infty}^{\frac{1}{2}} \\
& +b_{r} \int_{0}^{t} \frac{p(u, v)}{1-q^{*}}\left\|(u-v)^{2}\right\|_{\infty}^{\frac{1}{2}} d s .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\alpha(u, v)|(N u)(t)-(N v)(t)|^{2} \leq & \left\|(u-v)^{2}\right\|_{\infty} \alpha(u, v) \\
& \left\|1+2 a_{r} \frac{p(u, v)}{1-q *}+b_{r} \int_{0}^{t} \frac{p(u, v)}{1-q *} d s\right\|_{\infty}^{2} . \\
\leq & \left\|(u-v)^{2}\right\|_{\infty} \phi\left(\left\|(u-v)^{2}\right\|_{\infty}\right) .
\end{aligned}
$$

Hence

$$
\alpha(u, v) \phi\left(2^{3} d(N(u), N(v)) \leq \lambda(\phi(d(u, v)) \phi(d(u, v))\right.
$$

where $\lambda \in \digamma, \phi \in \Phi$, with $\lambda(t)=\frac{1}{8} t$, and $\phi(t)=t$. So, N is generalized α - ϕ-Geraghty operator.

Let $u, v \in C(I)$ such that

$$
\alpha(u, v) \geq 1 .
$$

Thus, for each $t \in I$, we have

$$
\theta(u(t), v(t)) \geq 0 .
$$

This implies from $\left(H_{3}\right)$ that

$$
\theta(N u(t), N v(t)) \geq 0,
$$

which gives

$$
\alpha(N(u), N(v)) \geq 1 .
$$

Hence, N is a α-admissible.
Now, from $\left(H_{2}\right)$, there exists $\mu_{0} \in C(I)$ such that

$$
\alpha\left(\mu_{0}, N\left(\mu_{0}\right)\right) \geq 1
$$

Finally, From $\left(H_{4}\right)$, If $\mu_{n_{n \in N}} \subset M$ with $\mu_{n} \rightarrow \mu$ and $\alpha\left(\mu_{n}, \mu_{n+1}\right) \geq 1$, then

$$
\alpha\left(\mu_{n}, \mu\right) \geq 1
$$

From an application of Theorem 1, we deduce that N has a fixed point u which is a solution of problem (1).

Moreover, $\left(H_{5}\right)$, implies that if x and y are fixed points of N, then either $\theta(x, y) \geq 0$ or $\theta(y, x) \geq 0$. This implies that either $\alpha(x, y) \geq 0$ or $\alpha(y, x) \geq 0$. Hence; problem (1) has the uniqueness.

4 An Example

Consider the Caputo-Fabrizio fractional differential problem

$$
\left\{\begin{array}{l}
\left(\begin{array}{l}
C F \\
\left.D_{0}^{r} u\right)(t)=f\left(t, u(t),\left({ }^{C F} D_{0}^{r} u\right)(t)\right) ; t \in[0,1] \\
u(0)=0,
\end{array}\right. \tag{7}
\end{array}\right.
$$

where

$$
f(t, u, v)=\frac{1+\sin (|u|)}{4(1+|u|)}+\frac{1}{4(1+|v|)} ; t \in[0,1] .
$$

Let $(C([0,1]), d, 2)$ be the complete b-metric space, such that $d: C([0,1]) \times$ $C([0,1]) \rightarrow \mathbb{R}_{+}^{*}$ is given by:

$$
d(u, v)=\left\|(u-v)^{2}\right\|_{\infty}:=\sup _{t \in[0,1]}|u(t)-v(t)|^{2} .
$$

For each $u, v \in C([0,1])$, we have Let $t \in(0,1]$, and $u, v, \bar{u}, \bar{v} \in C([0,1])$. If $|u(t)| \leq|v(t)|$, then

The case when $|v(t)| \leq|u(t)|$, we get

$$
|f(t, u(t), \bar{u}(t))-f(t, v(t), \bar{v}(t))| \leq\left(2+\|u\|_{\infty}\right)\|u-v\|_{\infty}+\frac{\|\bar{u}-\bar{v}\|_{\infty}}{4} .
$$

Hence
$|f(t, u(t), \bar{u}(t))-f(t, v(t), \bar{v}(t))| \leq \min \left\{2+\|u\|_{\infty}, 2+\|v\|_{\infty}\right\}\|u-v\|_{\infty}+\frac{\|\bar{u}-\bar{v}\|_{\infty}}{4}$.
Thus, hypothesis $\left(H_{2}\right)$ is satisfied with

$$
p(u, v)=\min \left\{2+\|u\|_{\infty}, 2+\|v\|_{\infty}\right\}, \text { and } q(t)=\frac{1}{4} .
$$

Define the functions $\lambda(t)=\frac{1}{8} t, \phi(t)=t, \alpha: C([0,1]) \times C([0,1]) \rightarrow \mathbb{R}_{+}^{*}$ with

$$
\left\{\begin{array}{l}
\alpha(u, v)=1 ; \text { if } \delta(u(t), v(t)) \geq 0, t \in I \\
\alpha(u, v)=0 ; \text { else }
\end{array}\right.
$$

and $\delta: C([0,1]) \times C([0,1]) \rightarrow \mathbb{R}$ with $\delta(u, v)=\|u-v\|_{\infty}$.
Hypothesis $\left(H_{2}\right)$ is satisfied with $\mu_{0}(t)=u_{0}$. Also, $\left(H_{3}\right)$ holds from the definition of the function δ.

Simple computations show that all conditions of Theorem 2 are satisfied. Hence, we get the existence of solutions and the uniqueness for problem (7).

References

[1] Abbas, S., Benchohra, M., Graef, J.R, and Henderson, J., Implicit fractional differential and integral equations: existence and stability, De Gruyter, Berlin, 2018.
[2] Abbas, S., Benchohra, M. and Henderson, J., Coupled Caputo-Fabrizio fractional differential systems in generalized Banach spaces, Malaya J. Matematik, 9 (2021), no. 1, 20-25.
[3] Abbas, S., Benchohra, M. and Nieto, J.J., Caputo-Fabrizio fractional differential equations with instantaneous impulses, AIMS Mathematics, 6 (2021), no. 3, 2932-2946.
[4] Abbas, S., Benchohra, M. and Nieto, J.J., Functional implicit hyperbolic fractional order differential equations with delay, Afr. Diaspora J. Math. 15 (2013), no. 1, 74-96.
[5] Abbas, S., Benchohra, M. and N'Guérékata, G.M., Topics in fractional differential equations, Springer, New York, 2012.
[6] Abbas, S., Benchohra, M. and N'Guérékata, G.M., Advanced fractional differential and integral equations, Nova Science Publishers, New York, 2015.
[7] Afshari, H. Aydi, H. and Karapinar, E., Existence of fixed points of set-valued mappings in b-metric spaces, East Asian Math. J. 32 (2016), no. 3, 319-332.
[8] Afshari, H. Aydi, H. and Karapinar, E., On generalized $\alpha-\psi-$ Geraghty contractions on b-metric spaces, Georgian Math. J. 27 (2020), no. 1, 9-21.
[9] Bekada, F., Abbas, S. and Benchohra, M., Boundary value problem for Caputo-Fabrizio random fractional differential equations, Moroccan J. Pure Appl. Anal. (MJPAA) 6 (2020), no. 2, 218-230.
[10] Bekkouche, M., Guebbai, M., Kurulay, H. and Benmahmoud, M., A new fractional integral associated with the Caputo-Fabrizio fractional derivative, Rend. del Circolo Mat. di Palermo, Series II In Press, https://doi.org/10.1007/s12215-020-00557-8.
[11] Bota, M.-F., Guran, L. and Petruşel, A., New fixed point theorems on bmetric spaces with applications to coupled fixed point theory, J. Fixed Point Theo. Appl. 22 (2020), no. 3, article 74.

Implicit Caputo-Fabrizio fractional differential equations
[12] Caputo, M. and Fabrizio, M., A new definition of fractional derivative without singular kernel, Prog. Frac. Differ. Appl. 1 (2015), no. 2, 73-78.
[13] Cobzas, S. and Czerwik, S. The completion of generalized b-metric spaces and fixed points, Fixed Point Theory 21 (2020), no. 1, 133-150.
[14] Czerwik, S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena. 46 (1998), no. 2, 263-276.
[15] Czerwik, S., Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav. 1 (1993), 5-11.
[16] Derouiche, D. and Ramoul, H., New fixed point results for F-contractions of Hardyy Rogers type in b-metric spaces with applications, J. Fixed Point Theo. Appl. 22 (2020), no. 4, article 86.
[17] Dokuyucu, M.A., A fractional order alcoholism model via Caputo-Fabrizio derivative, AIMS Math. 5 (2020), 781-797.
[18] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J., Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006.
[19] Losada, J. and Nieto, J.J., Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 1 (2015), no. 2, 87-92.
[20] Panda, S.K., Karapinar, E. and Atangana, A., A numerical schemes and comparisons for fixed point results with applications to the solutions of Volterra integral equations in dislocated extended b-metric space, Alexandria Engineering J. 59 (2020), no. 2, 815-827.
[21] Samko, S.G., Kilbas, A.A. and Marichev, O.I., Fractional integrals and derivatives. Theory and applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian.
[22] Salim, K., Abbas, S., Benchohra, M. and Darwish, M.A., Boundary value problem for implicit Caputo-Fabrizio fractional differential equations, Int. J. Difference Equ. 15 (2020), no. 2, 493-510.
[23] Shahkoohi, R.J. and Razani, A., Some fixed point theorems for rational Geraghty contractive mappings in ordered b-metric spaces, J. Inequal. Appl. 2014, 2014, article 373.
[24] Tarasov, V.E., Fractional dynamics: application of fractional calculus to dynamics of particles, fields and media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
[25] Zhou, Y., Basic theory of fractional differential equations, World Scientific, Singapore, 2014.

[^0]: 1* Corresponding author, Department of Mathematics, University of Saïda-Dr. Moulay Tahar, P.O. Box 138, EN-Nasr, 20000 Saïda, Algeria e-mail: abbasmsaid@yahoo.fr, said.abbas@univ-saida.dz
 ${ }^{2}$ Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, P.O. Box 89, Sidi Bel-Abbès 22000, Algeria, e-mail: benchohra@yahoo.com
 ${ }^{3}$ Laboratory of Mathematics, University of Saïda-Dr. Moulay Tahar, P.O. Box 138, EN-Nasr, 20000 Saïda, Algeria, e-mail: salimsalimkrim@gmail.com, salim.krim@univ-saida.dz

