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Abstract

In this work we consider the three-dimensional generalized symmetric
space, equipped with the left-invariant pseudo-Riemannian metric. We de-
termine Killing vector fields and affine vectors fields. Also we obtain a full
classification of Ricci, curvature and matter collineations.
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1 Introduction

Let (M, g) be a pseudo-Riemannian manifold, a Killing vector field is a
vector field on (M, g) that preserves the metric. Killing fields are the infinitesimal
generators of isometries; that is, flows generated by Killing fields are continuous
isometries of the manifold. More simply, the flow generates a symmetry, in the
sense that moving each point on an object the same distance in the direction of
the Killing vector will not distort distances on the object. Specifically, a vector
field X is a Killing field if the Lie derivative with respect to X of the metric g
vanishes: LXg = 0. In terms of the Levi-Civita connection, this is equivalent to
g(∇YX,Z) = −g(∇ZX,Y ) for all vector fields Y, Z. Therefore, it is sufficient
to establish it in a preferred coordinate system in order to have it hold in all
coordinate systems. The Killing fields on a manifold M form a Lie subalgebra of
vector fields on M . This is the Lie algebra of the isometry group of the manifold
if M is complete.

A typical use of the Killing field is to express a symmetry in General relativity
(in which the geometry of spacetime as distorted by gravitational fields is viewed
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as a 4-dimensional pseudo-Riemannian manifold). In a static configuration, in
which nothing changes with time, the time vector will be a Killing vector, and
thus the Killing field will point in the direction of forward motion in time.

On the other hand, a vector field X tangent to (M, g) is said to be affine
if it satisfies LX∇ = 0, where ∇ is the Levi-Civita connection of (M, g) (or
equivalently, if [X,∇Y Z] = ∇[X,Y ]Z +∇Y [X,Z] for all vector fields Y, Z) which
means that the local fluxes of X given by affine maps. Obviously Killing vector
field is also affine. However, the converse does not hold in general. In particular, if
(M, g) is a simply connected spacetime, the existence of a non Killing affine vector
field implies the existence of a second-order covariantly constant symmetric tensor,
nowhere vanishing, not proportional to g. As a consequence, the holonomy group
of the manifold is reducible.

A curvature (resp. Ricci) collineations is a vector field X which preserves the
Riemann tensor R (resp. the Ricci tensor Ric) in the sense that, LXR = 0 (resp.
LXRic = 0), where L denotes the Lie derivative. The set of all smooth curvature
collineations forms a Lie algebra under the Lie bracket operation, which may be
infinite-dimensional. Every affine vector field is a curvature collineations.

A matter collineations is a vector field X that satisfies the condition LXT = 0,
where T is the energy-momentum tensor given by T = Ric− 1

2τg with τ denotes
the scalar curvature. The relation between geometry and physics may be high-
lighted here, as the vector field X is regarded as preserving certain physical quan-
tities along the flow lines of X, this being true for any two observers. In connection
with this, it may be shown that every Killing vector field is a matter collineations
(by the Einstein field equations, with or without cosmological constant). Thus,
a vector field that preserves the metric necessarily preserves the corresponding
energy-momentum tensor. When the energy-momentum tensor represents a per-
fect fluid, every Killing vector field preserves the energy density, pressure and the
fluid flow vector field. When the energy-momentum tensor represents an electro-
magnetic field, a Killing vector field does not necessarily preserve the electric and
magnetic fields.

More general, a collineations or a symmetry of a tensor field S on a pseudo-
Riemannian manifold (M, g) is a one-parameter group of diffeomorphisms of
(M, g), which leaves S invariant. Therefore, each symmetry corresponds to a
vector field X which satisfies LXS = 0. Symmetries of the metric tensor g which
correspond to the Killing vector fields. Symmetries of the Levi-Civita connection
∇ which correspond to the affine vector fields. Since symmetries are more signifi-
cant from physical aspects, they have been studied on several kinds of space-times
(see [11, 12], [10, 8, 9],[14]).

The aim of this paper, is to study symmetries of the three-dimensional gener-
alized symmetric space, equipped with a left-invariant pseudo-Riemannian metric.
The paper is organized in the following way. In Section 3, we shall report some
basic information about three-dimensional generalized space and its left-invariant
pseudo-Riemannian metrics in global coordinates, we shall describe their Levi-
Civita connection, the curvature and the Ricci tensor. In Section 4, affine, homo-
thetic and Killing vector fields of three-dimensional generalized space are char-
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acterized via a system of partial differential equations. Then, in Section 5 and
6, we shall respectively classify Ricci, curvature and matter collineations on the
low-three-dimensional generalized space equipped with Lorentzian left-invariant
metric.

2 Preliminaries

Let (M, g) be a connected pseudo-Riemannian and x a point ofM. A symmetry
at x is an isometry sx of M, having x as isolated fixed point. When (M, g) is a
symmetric space, each point x admits a symmetry sx reversing geodesics through
the point. Hence, sx is involutive for all x. This property was generalized by A.J.
Ledger, who defined a regular s−structure as a family {sx : x ∈M} of symmetries
of (M, g) satisfying

sx ◦ sy = sz ◦ sx, z = sx(y),

for all x, y of M. The of an s−structure is the least integer k ≥ 2, such that
(sx)k = idM for all x (it may happen that k = ∞). A generalized symmetric
space is a connected pseudo-Riemannian (M, g) admitting a regular s−structure.
The order of a generalized symmetric space is the minimum of all integers k ≥ 2
such that M admits a regular s−structure of order k.

Following [13], any proper (that is, non-symmetric) three-dimensional gener-
alized symmetric space (M, g) is of order 4. Moreover, it is given by the space
R3(x, y, t) with the pseudo-Riemannian metric

g = ε(e2tdx2 + e−2tdy2) + λdt2, (1)

where ε = ±1 and λ 6= 0 is a real constant. Depending on the values of ε and λ,
these metrics attain any possible signature: (3, 0), (0, 3), (2, 1), (1, 2).

3 Connection and curvature of three-dimensional gen-
eralized symmetric spaces

Let (M, g) be a three-dimensional generalized symmetric space which is the
space R3(x, y, t), and denote by ∇, R and Ric the Levi-Civita connection, the
Riemann curvature tensor and the Ricci tensor of M, respectively. We used the
coordinates (x1, x2, x3) = (x, y, t) and the corresponding basis of coordinate vector

fields basis
{

∂
∂x1

, ∂
∂x2

, ∂
∂x3

}
by {∂x1 , ∂x2 , ∂x3}.

The Levi-Civita connection ∇ of (M, g) with respect to the coordinates vector
fields {∂x1 , ∂x2 , ∂x3} .

The non-vanishing components of the Levi-Civita connection ∇ of (M, g) are
given by 

∇∂x1∂x1=−
ε
λe

2x3∂x3 , ∇∂x1∂x3 = ∂x1 ,

∇∂x2∂x2 = ε
λe
−2x3∂x3 , ∇∂x2∂x3 = −∂x2 ,

∇∂x3∂x1 = ∂x1 , ∇∂x3∂x2 = −∂x2 .
(2)
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The curvature tensor R taken with the sign convention

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The non-vanishing curvature tensor R components are computed as
R(∂x1 , ∂x2)∂x1 = − ε

λe
2x3∂x2 , R(∂x1 , ∂x2)∂x2 = ε

λe
−2x3∂x1 ,

R(∂x1 , ∂x3)∂x1 = ε
λe

2x3∂x3 , R(∂x1 , ∂x3)∂x3 = −∂x1 ,
R(∂x2 , ∂x3)∂x2 = ε

λe
−2x3∂x3 , R(∂x2 , ∂x3)∂x3 = −∂x2 .

(3)

The Ricci curvature Ric is defined by

Ric(X,Y ) = trace{Z → R(Z,X)Y }. (4)

The components {Ricij} of Ric are defined by

Ric(∂xi , ∂xj ) = Ricij =
3∑

k=1

g(∂xk , ∂xk)g
(
R(∂xk , ∂xi)∂xj , ∂xk

)
. (5)

The non-vanishing components {Ricij} are computed as

Ric∂x3 ,∂x3 = −2. (6)

The scalar curvature τ of (M, g) is constant and we have

τ = trRic =

3∑
i=1

g(∂xi , ∂xi)Ric(∂xi , ∂xi) = − 2

λ
. (7)

4 Affine, homothetic and Killing vector fields

We first classify affine, homothetic and Killing vector fields of the three-
dimensional generalized space. The classifications we obtain are summarized in
the following theorem.

Theorem 1. Let X = f1∂x1 + f2∂x2 + f3∂x3 be an arbitrary vector field on the
three-dimensional generalized space.

1. X is a Killing vector field if and only if
f1 = −c1x1 + c2,
f2 = c1x2 + c3,
f3 = c1, ci ∈ R.

2. There are no homothetic non-Killing vector fields.

3. X is a affine vector field if and only if
f1 = −c1x1 + c2,
f2 = c1x2 + c3,
f3 = c1, ci ∈ R.
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Proof. Let X = f1∂x1 +f2∂x2 +f3∂x3 denote an arbitrary vector field on the three-
dimensional generalized space, for some arbitrary smooth functions f1, f2, f3 on
the three-dimensional generalized space. Starting from (1), a direct calculation
yields the following description of the Lie derivative of the metric tensor g :

(LXg)(∂x1 , ∂x1) = 2εe2x3(∂x1f1 + f3),
(LXg)(∂x1 , ∂x2) = ε(e−2x3∂x1f2 + e2x3∂x2f1),
(LXg)(∂x1 , ∂x3) = εe2x3∂x3f1 + λ∂x1f3,
(LXg)(∂x2 , ∂x2) = 2εe−2x3(∂x2f2 − f3),
(LXg)(∂x2 , ∂x3) = εe−2x3∂x3f2 + λ∂x2f3,
(LXg)(∂x3 , ∂x3) = 2λ∂x3f3.

(8)

In order to determine the homothetic and Killing vector fields, we then must solve
the system of PDEs obtained require that LXg = ηg, for some real constant η. The
solutions of the corresponding system of PDEs give us the homothetic and Killing
(in the case η = 0) vector fields of the three-dimensional generalized symmetric
space, 

∂x1f1 + f3 = η
2 ,

e−2x3∂x1f2 + e2x3∂x2f1 = 0,
εe2x3∂x3f1 + λ∂x1f3 = 0,
∂x2f2 − f3 = η

2 ,
εe−2x3∂x3f2 + λ∂x2f3 = 0,
∂x3f3 = η

2 .

(9)

We first integrate the last equation in 9 and we get

f3 =
η

2
x3 + F3(x1, x2),

where F3 is an arbitrary smooth function.
Next we replace f3 into the third and fifth equations of 9, they respectively become

εe2x3∂x3f1 + λ∂x1F3 = 0,
εe−2x3∂x3f2 + λ∂x2F3 = 0,

which, integrated, yield

f1 = λ
2εe
−2x3∂x1F3 + F1(x1, x2),

f2 = λ
2εe

2x3∂x2F3 + F2(x1, x2),
(10)

for some smooth functions F1, F2. Substituting the above expressions of f1 and f2
into the second equation of 9, it now gives

e−2x3∂x1F2 + e2x3∂x2F1 = 0. (11)

Since the above equation 11 must hold for all values of x3, yields ∂x2F1 = ∂x1F2 =
0, that is,

F1 = F1(x1), F2 = F2(x2).
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System 9 reduces to its first and fourth equations. The first and fourth equations
in 9 now reads

λ
2εe
−2x3∂2x1F3 + F ′1(x1) + η

2x3 + F3 = 0,
λ
2εe

2x3∂2x2F3 + F ′2(x2)−
η
2x3 − F3 = 0.

(12)

Since the above equation 12 holds for all values of x3, in particular it implies that
F3 = −F ′1(x1) = F ′2(x2) = c1, where c1 is a real constant. Next we replace F3 in
12 and 10 we obtain 

f1 = −c1x1 + c2,
f2 = c1x2 + c3,
f3 = c1,
η = 0,

(13)

where c1, c2, c3 ∈ R. And as η = 0 then there are no homothetic non-Killing
vectors fields in three-dimensional generalized symmetric space.

To determine the affine Killing vector fields, we need to calculate the Lie
derivative of the Levi-Civita connection ∇. Staring from (2),we find the following
possibly non-vanishing components:

(LX∇)(∂x1 , ∂x1)= (∂2x1f1 + 2∂x1f3+
ε
λe

2x3∂x3f1)∂x1 + (∂2x1f2 + ε
λe

2x3∂x3f2)∂x2

+(∂2x1f3 + ε
λe

2x3(∂x3f3 − 2f3 − 2∂x1f1))∂x3 ,

(LX∇)(∂x1 , ∂x2) = (∂x1∂x2f1 + ∂x2f3)∂x1 + (∂x1∂x2f2 − ∂x1f3)∂x2

+(∂x1∂x2f3 + ε
λe
−2x3∂x1f2 − ε

λe
2x3∂x2f1)∂x3 ,

(LX∇)(∂x1 , ∂x3) = (∂x1∂x3f1 + ∂x3f3)∂x1 + (∂x1∂x3f2 − 2∂x1f2)∂x2

+(∂x1∂x3f3 − ∂x1f3 − ε
λe

2x3∂x3f1)∂x3 ,

(LX∇)(∂x2 , ∂x2)=(∂2x2f1 −
ε
λe
−2x3∂x3f1)∂x1+(∂2x2f2−2∂x2f3− ε

λe
−2x3∂x3f2)∂x2

+(∂2x2f3 + ε
λe
−2x3(−2f3 + 2∂x2f2 − ∂x3f3))∂x3 ,

(LX∇)(∂x2 , ∂x3) = (∂x2∂x3f1 + 2∂x2f1)∂x1 + (∂x2∂x3f2 − ∂x3f3)∂x2

+(∂x2∂x3f3 + ∂x2f3 + ε
λe
−2x3∂x3f2)∂x3 ,

(LX∇)(∂x3 , ∂x3)=(∂2x3f1 + 2∂x3f1)∂x1 +(∂2x3f2 − 2∂x3f2)∂x2 + ∂2x3f3∂x3 .
(14)

In order to determine the affine vector fields, we then must solve the system of
PDEs obtained requiring that all the coefficients in the above Lie derivative are
equal to zero.
From equation dx3[(LX∇)(∂x3 , ∂x3)] = 0 it fellows that

f3 = A(x1, x2)x3 +A(x1, x2),
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where A and A are real valuables smooth functions.
We then replace f3 in equations given by dx3[(LX∇)(∂x2 , ∂x2)] = 0 and

dx3[(LX∇)(∂x2 , ∂x2)] = 0, we get{
∂x2f2 = −λ

ε e
2x3 [∂2x2Ax3 + ∂2x2A] +Ax3 +A+ 1

2A,

∂x1f1 = −λ
ε e
−2x3 [∂2x1Ax3 + ∂2x1A]−Ax3 −A− 1

2A.
(15)

and {
∂x3∂x2f2 = − λ

2εe
2x3 [2∂2x2Ax3 + 2∂2x2A+ ∂2x2A] +A,

∂x3∂x1f1 = λ
2εe
−2x3 [−2∂2x1Ax3 − 2∂2x1A+ ∂2x1A]−A.

Next we replace f3, ∂x2f2, ∂x1f1, ∂x3∂x2f2 and ∂x3∂x1f1 in equations given by
dx2[(LX∇)(∂x2 , ∂x3)] = 0 and dx1[(LX∇)(∂x1 , ∂x3)] = 0, we get{

∂2x2A = ∂2x1A = 0,

∂2x2A = ∂2x1A = 0.
(16)

Which together with equations given by dx1[(LX∇)(∂x1 , ∂x2)] = 0 and
dx2[(LX∇)(∂x1 , ∂x2)] = 0, and using equation 16, we get{

∂x1A = 0,
∂x2A = 0.

(17)

Since from the above equations 16 , 17 and by integrating equations 15, we
conclude that


f1 = −cx1x3 − 1

2cx1 −
1
2c1x

2
1 − c2x1x2 − 1

2c3x
2
1x2 − c4x1 + c5,

f2 = cx2x3 + 1
2cx2 + c1x1x2 + 1

2c2x
2
2 + 1

2c3x1x
2
2 + c4x2 + c6,

f3 = cx3 + c1x1 + c2x2 + c3x1x2 + c4,
(18)

where c, ci ∈ R.
Replacing f1 into equations dx1[(LX∇)(∂x2 , ∂x2)] = 0 and

dx1[(LX∇)(∂x2 , ∂x3)] = 0, we get

c = c2 = c3 = 0.

And similarly replacing f2 into equations dx2[(LX∇)(∂x1 , ∂x1)] = 0 and
dx2[(LX∇)(∂x1 , ∂x3)] = 0, we get

c = c1 = c3 = 0.

Thus the final solution of PDEs system obtained requiring that all the coef-
ficients in the above Lie derivative of the Levi-Civita connection ∇ are equal to
zero are given by 

f1 = −c4x1 + c5,
f2 = c4x2 + c6,
f3 = c4, ci ∈ R.

(19)
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5 Ricci and curvature collineations

In this section we give a full classification of Ricci and curvature collineations
vector fields of the three-dimensional generalized space. The classifications we
obtain are summarized in the following theorem.

Theorem 2. Let X = f1∂x1 + f2∂x2 + f3∂x3 be an arbitrary vector field on the
three-dimensional generalized space.

1. X is a Ricci collineation if and only if

X = f1∂x1 + f2∂x2 + c∂x3 ,

where c ∈ R, and f1, f2 are any smooth functions on the three-dimensional
generalized space.

2. X is a curvature collineation vector field if and only if
f1 = −c1x1 + c2,
f2 = c1x2 + c3,
f3 = c1,

where c1, c2, c3 ∈ R.

Proof. Let X = f1∂x1 +f2∂x2 +f3∂x3 denote an arbitrary vector field on the three-
dimensional generalized space, for some arbitrary smooth functions f1, f2, f3 on
the three-dimensional generalized space. Starting from (6), a direct calculation
yields the following description of the Lie derivative of the Ricci tensor Ric in the
direction of X given by:

(LXRic)(∂x1 , ∂x1) = 0,
(LXRic)(∂x1 , ∂x2) = 0,
(LXRic)(∂x1 , ∂x3) = −2∂x1f3,
(LXRic)(∂x2 , ∂x2) = 0,
(LXRic)(∂x2 , ∂x3) = −2∂x2f3,
(LXRic)(∂x3 , ∂x3) = −4∂x3f3.

(20)

Ricci collineations are then calculated by solving the system of PDEs obtained by
requiring that all the above coefficients of LXRic vanish.
From equations given by (LXRic)(∂x1 , ∂x3) = 0, (LXRic)(∂x2 , ∂x3) = 0 and
(LXRic)(∂x3 , ∂x3) = 0 we get that

f3 = c,

where c ∈ R and f1, f2 are any smooth functions on the three-dimensional gener-
alized space.

To determine the curvature collineations, we need to calculate the Lie deriva-
tive of the curvature tensor R in the direction of X. Staring from (3),we find the
following possibly non-vanishing components:
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(LXR)(∂x1 , ∂x2 , ∂x1) = ε
λ [e2x3∂x2f1 + e−2x3∂x1f2]∂x1 − ε

λe
2x3 [2f3 + 2∂x1f1]∂x2

+2 ελe
2x3∂x2f3∂x3 ,

(LXR)(∂x1 , ∂x2 , ∂x2)=2 ελe
−2x3 [−f3+∂x2f2]∂x1− ε

λ [e2x3∂x2f1+e−2x3∂x1f2]∂x2
−2 ελe

−2x3∂x1f3∂x3 ,
(LXR)(∂x1 , ∂x2 , ∂x3) = [ ελe

−2x3∂x3f2 − ∂x2f3]∂x1 − [∂x1f3 + ε
λe

2x3∂x3f1]∂x2 ,
(LXR)(∂x1 , ∂x3 , ∂x1) = −[ ελe

2x3∂x3f1 + ∂x1f3]∂x1 − 2 ελe
2x3∂x3f2∂x2

+2 ελe
2x3 [f3 + ∂x1f1]∂x3 ,

(LXR)(∂x1 , ∂x3 , ∂x2)=[ ελe
−2x3∂x3f2−∂x2f3]∂x1 + ε

λ [e2x3∂x2f1+e−2x3∂x1f2]∂x3 ,
(LXR)(∂x1 , ∂x3 , ∂x3) = −2∂x3f3∂x1 + [ ελe

2x3∂x3f1 + ∂x1f3]∂x3 ,
(LXR)(∂x2 , ∂x3 , ∂x1)=[ ελe

2x3∂x3f1 − ∂x1f3]∂x2 + ε
λ [e2x3∂x2f1 − e−2x3∂x1f2]∂x3 ,

(LXR)(∂x2 , ∂x3 , ∂x2) = −2 ελe
−2x3∂x3f1∂x1 − [ ελe

−2x3∂x3f2 + ∂x2f3]∂x2
+2 ελe

−2x3 [−f3 + ∂x2f2]∂x3 ,
(LXR)(∂x2 , ∂x3 , ∂x3) = −2∂x3f3∂x2 + [ ελe

−2x3∂x3f2 + ∂x2f3]∂x3 ,
(21)

In order to determine the curvature collineation vector fields, we then must solve
the system of PDEs obtained requiring that all the coefficients in the above Lie
derivative of the curvature tensor in the direction of X are equal to zero.
Which together with equations

dx3[(LXR)(∂x1 , ∂x2 , ∂x2)] = 0, dx3[(LXR)(∂x1 , ∂x2 , ∂x1)] = 0,

dx3[(LXR)(∂x1 , ∂x3 , ∂x1)] = 0, dx2[(LXR)(∂x1 , ∂x3 , ∂x1)] = 0,

dx1[(LXR)(∂x2 , ∂x3 , ∂x2)] = 0, dx3[(LXR)(∂x2 , ∂x3 , ∂x2)] = 0

dx1[(LXR)(∂x1 , ∂x3 , ∂x3)] = 0,

and we obtain after integration
f1 = −c1x1 +B(x2),

f2 = c1x2 +B(x1),
f3 = c1,

(22)

where c1 ∈ R and B,B are smooth functions.
Next, we replace f1 and f2 in equation dx1[(LXR)(∂x1 , ∂x2 , ∂x1)] = 0, we get

e2x3B′(x2) + e−2x3B
′
(x1) = 0. (23)

Since the above equation (23) holds for all values of x3, in particular implies that{
B(x2) = c2,

B(x1) = c3, c2, c3 ∈ R. (24)

The final solution of the system of PDEs obtained requiring that all the coef-
ficients in the above Lie derivative of the curvature tensor in the direction of X
are equal to zero are given by

f1 = −c1x1 + c2,
f2 = c1x2 + c3,
f3 = c1,

where c1, c2, c3 ∈ R.



460 L. Belarbi

6 Matter collineations

In this section we classify matter collineation vector fields of the three-dimensional
generalized space. The classifications we obtain are summarized in the following
theorem.

Theorem 3. Let X = f1∂x1 + f2∂x2 + f3∂x3 be an arbitrary vector field on the
three-dimensional generalized space.

X is a matter collineation vector field if and only if
f1 = −c1x1 + c2,
f2 = c1x2 + c3,
f3 = c1,

Where c1, c2, c3 ∈ R.

Proof. Let X = f1∂x1 +f2∂x2 +f3∂x3 denote an arbitrary vector field on the three-
dimensional generalized space, for some arbitrary smooth functions f1, f2, f3 on
the three-dimensional generalized space. Starting from equations (1),(6) and (7),
a direct calculation yields in the three-dimensional generalized space, with respect
to the basis {∂xi}i∈{1,2,3} the tensor T = Ric− τ

2g is described by:

T =

 ε
λe

2x3 0 0
0 ε

λe
−2x3 0

0 0 −1

 (25)

When we compute the Lie derivative of T with respect to X and we find:

(LXT )(∂x1 , ∂x1) = 2 ελe
2x3 [f3 + ∂x1f1],

(LXT )(∂x1 , ∂x2) = ε
λ [e2x3∂x2f1 + e−2x3∂x1f2],

(LXT )(∂x1 , ∂x3) = ε
λe

2x3∂x3f1 − ∂x1f3,
(LXT )(∂x2 , ∂x2) = 2 ελe

−2x3 [−f3 + ∂x2f2],
(LXT )(∂x2 , ∂x3) = ε

λe
−2x3∂x3f2 − ∂x2f3,

(LXT )(∂x3 , ∂x3) = −2∂x3f3.

(26)

To determine matter collineations we solve the system of PDEs obtained requiring
that all the coefficients in the above Lie derivative of the tensor field T in the
direction of X are equal to zero (i.e. LXT = 0), we get that all solutions coincide
with Killing vector fields of the three-dimensional generalized space.
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