GENERALIZED BERNSTEIN TYPE OPERATORS

Alexandra Diana MELEŞTEU ${ }^{1}$

Abstract

In this paper we investigate certain properties of a class of generalized Bernstein type operators.

2000 Mathematics Subject Classification: 41A35, 41A10, 41A25 Key words: Bernstein operators, convergence, simultaneous approximations, Kantorovich operators of higher order.

1 Preliminaries

Let $B_{n}: C[0,1] \rightarrow C[0,1]$ be the Bernstein operators, defined as follows:

$$
\left(B_{n} f\right)(x)=\sum_{k=0}^{n} b_{n, k}(x) \cdot f\left(\frac{k}{n}\right), \forall f \in C[0,1]
$$

where

$$
b_{n, k}(x)=\binom{n}{k} \cdot x^{k} \cdot(1-x)^{n-k}
$$

In [1] the following Bernstein special operator have been introduced. Denote by V_{n} the operators defined as:

$$
V_{n}(f)(x)=\sum_{k=0}^{n} p_{n, k}(x) \cdot f\left(\frac{k}{n}\right)
$$

where

$$
p_{n, k}(x)=\left(1+\frac{1}{n}\right)^{n} \cdot\binom{n}{k} \cdot x^{k} \cdot\left(\frac{n}{n+1}-x\right)^{n-k}
$$

and

$$
f \in C[0,1], x \in\left[0,1-\frac{1}{n+1}\right], n \in \mathbb{N} .
$$

[^0]Similarly, we introduce a generalization to Bernstein operator:

$$
\begin{gather*}
S_{n}^{t}: C[0,1] \rightarrow C\left[0, \frac{n}{n+t}\right], t>0, n \in \mathbb{N} \\
S_{n}^{t}(f)(x)=\sum_{k=0}^{n} s_{n, k}(x) \cdot f\left(\frac{k}{n+t}\right), \forall f \in C[0,1], \quad x \in\left[0, \frac{n}{n+t}\right] \tag{1}
\end{gather*}
$$

where

$$
s_{n, k}(x)=\left(\frac{n+t}{n}\right)^{n} \cdot\binom{n}{k} \cdot x^{k} \cdot\left(\frac{n}{n+t}-x\right)^{n-k} .
$$

Operator S_{n}^{t} can be defined also on the space $C\left[0, \frac{n}{n+t}\right]$, and we denote a function $f \in C[0,1]$ and his restriction to the interval $\left[0, \frac{n}{n+t}\right]$ with the same symbol.

2 Auxiliary results

Denote the monomial functions by $e_{i}(t)=t^{i}, t \in \mathbb{R}, i=0,1,2, \ldots$. We use the Pochhammer symbol: $(a)_{r}=a(a-1) \ldots\left(a_{r}+1\right)$, for $a \in \mathbb{R}, r \in \mathbb{N}$.

Proposition 1. Operator S_{n}^{t} satisfies the following relations:
i) $S_{n}^{t}(f)(x) \geq 0$, if $f \in C\left[0, \frac{n}{n+t}\right], f \geq 0$.
ii) $S_{n}^{t}\left(e_{0}\right)(x)=1$;
iii) $S_{n}^{t}\left(e_{1}\right)(x)=x$;
iv) $S_{n}^{t}\left(e_{2}\right)(x)=x\left(\frac{n-1}{n} \cdot x+\frac{1}{n+t}\right)$,
where $x \in\left[0,1-\frac{1}{n+t}\right]$
Proof. i) It is obvious by definition;
ii)

$$
\begin{aligned}
S_{n}^{t}\left(e_{0}\right)(x) & =\left(\frac{n+t}{n}\right)^{n} \cdot \sum_{k=0}^{n}\left(\frac{n}{n+t}-x\right)^{n-k} \cdot x^{k} \cdot\binom{n}{k} \cdot 1 \\
& =\left(\frac{n+t}{n}\right)^{n} \cdot\left(\frac{n}{n+t}\right)^{n}=1
\end{aligned}
$$

iii)

$$
\begin{aligned}
S_{n}^{t}\left(e_{1}\right)(x) & =\left(\frac{n+t}{n}\right)^{n} \sum_{k=0}^{n}\left(\frac{n}{n+t}-x\right)^{n-k} x^{k}\binom{n}{k} \cdot \frac{k}{n+t} \\
& =\left(\frac{n+t}{n}\right)^{n} \cdot \frac{x}{n+t} \cdot n \cdot\left(\frac{n}{n+t}\right)^{n-1}=x
\end{aligned}
$$

iv)

$$
\begin{aligned}
S_{n}^{t}\left(e_{2}\right)(x) & =\left(\frac{n+t}{n}\right)^{n} \cdot \sum_{k=0}^{n}\left(\frac{n}{n+t}-x\right)^{n-k} \cdot x^{k} \cdot\binom{n}{k} \cdot \frac{k^{2}}{(n+t)^{2}} \\
& =\left(\frac{n+t}{n}\right)^{n} \cdot \frac{1}{(n+t)^{2}} \cdot x^{2} \cdot n \cdot(n-1) \cdot\left(\frac{n}{n+t}\right)^{n-2} \\
& +\left(\frac{n+t}{n}\right)^{n} \cdot \frac{1}{(n+t)^{2}} \cdot x \cdot n \cdot\left(\frac{n}{n+t}\right)^{n-1} \\
& =\frac{n-1}{n} \cdot x^{2}+\frac{1}{n+t} \cdot x=x\left(\frac{n-1}{n} \cdot x+\frac{1}{n+t}\right) .
\end{aligned}
$$

Proposition 2. The following recurrence relation holds:

$$
x\left(\frac{n}{n+t}-x\right) s_{n, k}^{\prime}(x)=n \cdot\left(\frac{k}{n+t}-x\right) s_{n, k}(x) .
$$

Proof. We have:

$$
\begin{aligned}
& x\left(\frac{n}{n+t}-x\right) s_{n, k}^{\prime}(x) \\
= & x \cdot\left(\frac{n}{n+t}-x\right) \cdot\left(\frac{n+t}{n}\right)^{n} \cdot\binom{n}{k} \cdot\left(k \cdot x^{k-1} \cdot\left(\frac{n}{n+t}-x\right)^{n-k}\right. \\
& \left.-x^{k} \cdot(n-k) \cdot\left(\frac{n}{n+t}-x\right)^{n-k-1}\right) \\
= & x \cdot\left(\frac{n}{n+t}-x\right) \cdot\left(\frac{n+t}{n}\right)^{n} \cdot\binom{n}{k} \cdot x^{k-1} \cdot\left(\frac{n}{n+t}-x\right)^{n-k-1} \\
& \times\left(k \cdot\left(\frac{n}{n+t}-x\right)-x \cdot(n-k)\right) \\
= & \left(\frac{n+t}{n}\right)^{n} \cdot\binom{n}{k} \cdot x^{k} \cdot\left(\frac{n}{n+t}-x\right)^{n-k} \frac{k \cdot n-n^{2} \cdot x-n \cdot t \cdot x}{n+t} \\
= & n \cdot\left(\frac{k}{n+t}-x\right) s_{n, k}(x) .
\end{aligned}
$$

Theorem 1. Let be the m-th order moment for the operator (1) be defined by

$$
\mu_{n, m}(x)=\sum_{k=0}^{n} s_{n, k}(x)\left(\frac{k}{n+t}-x\right)^{m}, m=0,1,2, \ldots
$$

then we have:
i) $\mu_{n, 0}(x)=1$;
ii) $\mu_{n, 1}(x)=0$;
iii) $n \mu_{n, m+1}(x)=x\left(\frac{n}{n+t}-x\right)\left(\mu_{n, m}^{\prime}(x)+m \mu_{n, m-1}(x)\right)$;
iv) $\mu_{n, 2}(x)=\frac{x}{n}\left(\frac{n}{n+t}-x\right)$;
v) $\mu_{n, 3}(x)=\frac{x}{n}\left(\frac{n}{n+t}-x\right)\left(\frac{1}{n+t}-\frac{2 x}{n}\right)$;
vi) $\mu_{n, 4}(x)=\frac{x}{n}\left(\frac{n}{n+t}-x\right)\left[\frac{1}{n} \cdot\left(\frac{n}{n+t}-x\right) \cdot\left(\frac{1}{n+t}-\frac{4 x}{n}+3\right)-\frac{x}{n}\left(\frac{1}{n+t}-\frac{2 x}{n}\right)\right]$.

Proof. i) It follows immediately from Proposition 1 - ii)
ii) From Proposition 1 - i), ii) we have

$$
\mu_{n, 1}(x)=S_{n}^{t}\left(e_{1}\right)(x)-x S_{n}^{t}\left(e_{0}\right)(x)=0 .
$$

iii) First note that

$$
\mu_{n}^{\prime}(x)=\sum_{k=0}^{n} s_{n, k}^{\prime}(x)\left(\frac{k}{n+t}-x\right)^{m}-m \sum_{k=0}^{n} s_{n, k}(x)\left(\frac{k}{n+t}-x\right)^{m-1} .
$$

Then, using also Proposition 2 we obtain

$$
\begin{aligned}
& x\left(\frac{n}{n+t}-x\right)\left(\mu_{n, m}^{\prime}(x)+m \mu_{n, m-1}(x)\right) \\
= & x\left(\frac{n}{n+t}-x\right) \sum_{k=0}^{n} s_{n, k}^{\prime}(x)\left(\frac{k}{n+t}-x\right)^{m} \\
= & n \sum_{k=0}^{n}\left(\frac{k}{n+t}-x\right) s_{n, k}(x)\left(\frac{k}{n+t}-x\right)^{m} \\
= & n \mu_{n, m+1}(x) .
\end{aligned}
$$

iv) Using i), ii) and iii), we have:

$$
\mu_{n, 2}(x)=\frac{x}{n}\left(\frac{n}{n+t}-x\right)\left(\mu_{n, 1}^{\prime}(x)+\mu_{n, 0}(x)\right)=\frac{x}{n}\left(\frac{n}{n+t}-x\right) .
$$

v) Using ii), iii) and iv), we have:

$$
\mu_{n, 3}(x)=\frac{x}{n}\left(\frac{n}{n+t}-x\right)\left(\mu_{n, 2}^{\prime}(x)+2 \mu_{n, 1}(x)\right)=\frac{x}{n}\left(\frac{n}{n+t}-x\right)\left(\frac{1}{n+t}-\frac{2 x}{n}\right) .
$$

vi) Using iii), iv) and v), we have:

$$
\begin{aligned}
\mu_{n, 4}(x) & =\frac{x}{n}\left(\frac{n}{n+t}-x\right)\left(\mu_{n, 3}^{\prime}(x)+3 \mu_{n, 2}(x)\right) \\
& =\mu_{n, 2}(x)\left(\mu_{n, 3}^{\prime}(x)+3 \mu_{n, 2}(x)\right) \\
& =\mu_{n, 2}(x)\left[\frac{1}{n} \cdot\left(\frac{n}{n+t}-x\right) \cdot\left(\frac{1}{n+t}-\frac{4 x}{n}+3\right)-\frac{x}{n}\left(\frac{1}{n+t}-\frac{2 x}{n}\right)\right] .
\end{aligned}
$$

3 Convergence properties

Theorem 2. For all $t>0, f \in C[0,1]$ and $0<\epsilon<1$, it is true the following:

$$
\lim _{n \rightarrow \infty} S_{n}^{t}(f)(x)=f(x)
$$

uniformly on $[0,1-\epsilon]$.
Proof. There exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}, \frac{n}{n+t}>1-\epsilon$.
From Proposition 1 we have that $\lim _{n \rightarrow \infty} S_{n}^{t}\left(e_{i}\right)(x)=x^{i}, i=0,1,2$ uniformly on $[0,1-\epsilon]$. Then we can apply Korovkin theorem for the sequence $\left(S_{n}^{t}\right)_{n}$ on interval $[0,1-\epsilon]$.

Next, we give a Voronovskaja-type theorem.
Theorem 3. Let be $f \in C[0,1]$ be a bounded function two times derivable at the point $x \in(0,1)$. Then

$$
\lim _{n \rightarrow \infty} n\left[S_{n}^{t}(f)(x)-f(x)\right]=\frac{x(1-x)}{2} f^{\prime \prime}(x)
$$

Proof. Fix a point $x \in(0,1)$. Taylor expansion of f in point x leads to:

$$
\begin{equation*}
f(t)=f(x)-(t-x) f^{\prime}(x)+\frac{(t-x)^{2}}{2} f^{\prime \prime}(x)+(t-x)^{2} \eta_{x}(t-x), t \in[0,1] \tag{2}
\end{equation*}
$$

where η_{x} is a bounded function having the property $\lim _{h \rightarrow 0} \eta_{x}(h)=0$. Denote $\sigma(x, t)=(t-x)^{2} \eta_{x}(t-x), t \in[0,1]$.

We can choose an indice n_{0}, such that $\frac{n}{n+t}>x$, for $n \geq n_{0}$. Applying operator S_{n}^{t} for $n \geq n_{0}$ in (2) and taking into account Theorem 1 one obtains

$$
\begin{aligned}
S_{n}^{t}(f)(x) & =f(x) \mu_{n, 0}(x)+f^{\prime}(x) \mu_{n, 1}(x)+\frac{f^{\prime \prime}(x)}{2} \mu_{n, 2}(x)+S_{n}^{t}(\sigma(x, \cdot))(x) \\
& =f(x)+\left(-\frac{1}{n} x^{2}+\frac{1}{n+t} x\right) \frac{f^{\prime \prime}(x)}{2}+S_{n}^{t}(\sigma(x, \cdot))(x)
\end{aligned}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left[S_{n}^{t}(f)(x)-f(x)\right]=\frac{x(1-x)}{2} f^{\prime \prime}(x)+\lim _{n \rightarrow \infty} n\left(S_{n}^{t} \sigma(x, \cdot)\right)(x) \tag{3}
\end{equation*}
$$

Using Hölder inequality it follows

$$
\begin{aligned}
\left|n S_{n}^{t}(\sigma(x, \cdot))(x)\right| & =n\left|\sum_{k=0}^{n}\left(\frac{k}{n+t}-x\right)^{2} \eta_{x}\left(\frac{k}{n+t}-x\right) s_{n, k}(x)\right| \\
& \leq n \sqrt{\sum_{k=0}^{n} s_{n, k}(x)\left(\frac{k}{n+t}-x\right)^{4} \cdot \sum_{k=0}^{n} s_{n, k}(x) \eta_{x}^{2}\left(\frac{k}{n+t}-x\right)} \\
& =n \sqrt{\mu_{n, 4}(x)} \sqrt{S_{n}^{t}\left(\left(\eta_{x}\right)^{2}\right)(x)}
\end{aligned}
$$

From Theorem 1-vi) we obtain $\mu_{n, 4}(x)=\mathrm{O}\left(\frac{1}{n^{2}}\right)$. Then $n \sqrt{\mu_{n, 4}(x)}=\mathrm{O}(1)$.
On the other hand from Theorem 2 we have

$$
\lim _{n \rightarrow \infty} S_{n}^{t}\left(\left(\eta_{x}\right)^{2}\right)(x)=\eta_{x}(x)=0
$$

We deduce

$$
\lim _{n \rightarrow \infty} n\left(S_{n}^{t} \sigma(x, \cdot)\right)(x)=0
$$

This finishes the proof.

4 Simultaneous approximations

We adopt this known definitions
Definition 1. A function $g: I \rightarrow \mathbb{R}$, I interval, is named convex of order $r \geq-1$ if all the divided differences on $r+2$ points in I are positive.

Hence o positive function is a convex function of order -1 , an increasing function is convex of order 0 and so on. In other words, for $r \geq 0$ if $f \in C^{r+1}(I)$, then f is convex of order r iff $f^{(r+1)} \geq 0$.

Definition 2. A linear operator is named convex operator of order $r, r \geq-1$ if it transforms any r convex function into a r-convex function.

The following property is essential for proving the existence of the simultaneous approximation.

Theorem 4. Operators S_{n}^{t} is convex of order $r-1, \forall r \in[0, n]$.
Proof. It suffices to prove that we have $S_{n}^{t}(f)^{(r)} \geq 0, \forall f \in C^{r}\left[0, \frac{n}{n+t}\right]$, such that $f^{(r)} \geq 0$, because if f is convex of order $r-1$ on I, there is $g \in C^{(r)}\left[0, \frac{n}{n+t}\right]$, such that g coincides with f on the knots $\frac{k}{n+1}, 0 \leq k \leq n$ and we ca take g instead of f.

For $r=0$, the affirmation is true from Proposition $1-\mathrm{i}$).
Let be $r \geq 1$ and a function $f \in C^{r}\left[0, \frac{n}{n+t}\right]$ such that $f^{(r)} \geq 0$.
We use formula:

$$
\begin{align*}
& s_{n, k}^{\prime}(x) \tag{4}\\
& =(n+t)\left[s_{n-1, k-1}\left(\frac{(n-1)(n+t)}{n(n+t-1)} x\right)-s_{n-1, k}\left(\frac{(n-1)(n+t)}{n(n+t-1)} x\right)\right], 0 \leq k \leq n
\end{align*}
$$

Here we made the convention $s_{n,-1}(t)=0$ and $s_{n, n+1}(t)=0$, for any t and $n \geq 1$.

We denote by $\Delta_{h} f(x):=f(x+h)-f(h)$ and by Δ_{h}^{r}, the r-th iterate of Δ_{h}.

From formula (4). We have:

$$
\begin{align*}
& \left(S_{n}^{t}(f)\right)^{\prime}(x) \\
= & \sum_{k=0}^{n-1}(n+t)\left[s_{n-1, k-1}\left(\frac{(n-1)(n+t)}{n(n+t-1)} x\right)-s_{n-1, k}\left(\frac{(n-1)(n+t)}{n(n+t-1)} x\right)\right] f\left(\frac{k}{n+t}\right) \\
= & (n+t) \sum_{k=0}^{n-1} s_{n-1, k}\left(\frac{(n-1)(n+t)}{n(n+t-1)} x\right)\left[f\left(\frac{k+1}{n+t}\right)-f\left(\frac{k}{n+t}\right)\right] \\
= & (n+t) \sum_{k=0}^{n-1} s_{n-1, k}\left(\frac{(n-1)(n+t)}{n(n+t-1)} x\right) \Delta_{\frac{1}{n+t}} f\left(\frac{k}{n+t}\right) . \tag{5}
\end{align*}
$$

Now we apply induction. Suppose that the following is true:

$$
\begin{equation*}
\left(S_{n}^{t}(f)\right)^{(r)}(x)=(n+t)_{r} \sum_{k=0}^{n-r} s_{n-r, k}\left(\frac{(n-1)_{r}(n+t)_{r}}{(n)_{r}(n+t-1)_{r}} x\right) \Delta_{\frac{1}{n+t}}^{r} f\left(\frac{k}{n+t}\right), \tag{6}
\end{equation*}
$$

where $(n+t)_{r}$ is the Pochhammer symbol.
Taking the derivative in (6) an using formula (5) we obtain:

$$
\begin{aligned}
&\left.\left(S_{n}^{t}(f)\right)^{(r)}(x)\right)^{\prime} \\
&=(n+t)_{r} \\
& \sum_{k=0}^{n-r-1}(n-r+t) s_{n-r-1, k}\left(\frac{(n-1)_{r}(n+t)_{r}}{(n)_{r}(n+t-1)_{r}} \frac{(n-r-1)(n-r+t)}{(n-r)(n-r+t-1)} x\right) \\
& \quad \times \Delta_{\frac{1}{n+t}}\left(\Delta_{\frac{1}{n}}^{r+t} f\left(\frac{k}{n+t}\right)\right) \\
&=\left.(n+t)_{r+1} \sum_{k=0}^{n-r-1} s_{n-r-1, k}\left(\frac{(n-1)_{r+1}(n+t)_{r+1}}{(n)_{r+1}(n+t-1)_{r+1}} x\right) x\right) \Delta_{\frac{1}{n+t}}^{r+1} f\left(\frac{k}{n+t}\right) .
\end{aligned}
$$

So, relation (6) was proved.
Now if f is convex of order $r-1$ then all the finite differences $\Delta_{\frac{1}{n+t}}^{r} f\left(\frac{k}{n+t}\right)$ are positive. Then from formula (6) one obtains that $\left(S_{n}^{t}(f)\right)^{\prime} \geq 0$. This means that S_{n}^{t} is convex of order r.

The study of simultaneous approximation is based on the use of Kantorovich operators of higher order. First we prove the following additional theorems.

Theorem 5. Writing $T_{n, r}(x)=S_{n}^{t}\left(e_{r}\right)(x)$, we have:

$$
T_{n, r+1}(x)=x \cdot T_{n, r}(x)+\frac{x}{n}\left(\frac{n}{n+t}-x\right) T_{n, r}^{\prime}(x) .
$$

Proof. Using Proposition 2, we obtain

$$
\begin{aligned}
x\left(\frac{n}{n+t}-x\right) T_{n, r}^{\prime}(x) & =x\left(\frac{n}{n+t}-x\right) \sum_{k=0}^{n} s_{n, k}^{\prime}(x)\left(\frac{k}{n+t}\right)^{r} \\
& =n \sum_{k=0}^{n}\left(\frac{k}{n+t}-x\right) s_{n, k}(x)\left(\frac{k}{n+t}\right)^{r} \\
& =n\left(\sum_{k=0}^{n} s_{n, k}(x)\left(\frac{k}{n+t}\right)^{r+1}-x \sum_{k=0}^{n} s_{n, k}(x)\left(\frac{k}{n+t}\right)^{r}\right) \\
& =n T_{n, r+1}(x)-n x T_{n, r}(x) .
\end{aligned}
$$

From this it results

$$
T_{n, r+1}(x)=\frac{1}{n}\left(\frac{n}{n+t}-x\right) T_{n, r}^{\prime}(x)+x T_{n, r}(x)
$$

Theorem 6. For $n \geq 1, r \geq 0, x \in[0,1]$, we have:

$$
T_{n, r}(x)=A_{n, r} x^{r}+B_{n, r} x^{r-1}+C_{n, r} x^{r-2}+R_{n, r}(x)
$$

where

$$
\begin{aligned}
A_{n, r} & =\frac{(n-1)_{r-1}}{n^{r-1}}, \\
B_{n, r} & =\frac{r(r-1)}{2} \cdot \frac{(n-1)_{r-2}}{n^{r-2}(n+t)}, \\
C_{n, r} & =\frac{r(r-1)(r-2)(3 r-5)}{24} \cdot \frac{(n-1)_{r-3}}{n^{r-3}(n+t)^{2}}
\end{aligned}
$$

and $R_{n, r}$ is a polynomial of degree $r-3$.
Proof. From relation

$$
\begin{aligned}
T_{n, r+1}(x)= & x\left(A_{n, r} x^{r}+B_{n, r} x^{r-1}+C_{n, r} x^{r-2}+R_{n, r}(x)\right) \\
+ & \frac{x}{n}\left(\frac{n}{n+t}-x\right)\left(r A_{n, r} x^{r-1}+(r-1) B_{n, r} x^{r-2}\right. \\
& \left.+(r-2) C_{n, r} x^{r-3}+R_{n, r-1}(x)\right)
\end{aligned}
$$

by identifying the coefficients, we obtain:

$$
\begin{gathered}
A_{n, r+1}=\frac{n-r}{n} \cdot A_{n, r} \\
B_{n, r+1}=\frac{n-r+1}{n} \cdot B_{n, r}+\frac{r}{n+t} \cdot A_{n, r}
\end{gathered}
$$

$$
C_{n, r+1}=\frac{n-r+2}{n} \cdot C_{n, r}+\frac{r-1}{n+t} \cdot B_{n, r} .
$$

Using Proposition 1 and Theorem 5 one obtains

$$
\begin{aligned}
T_{n, 1}(x) & =x \\
T_{n, 2}(x) & =\frac{n-1}{n} \cdot x^{2}+\frac{1}{n+t} \cdot x
\end{aligned}
$$

and then

$$
\begin{aligned}
T_{n, 3}(x) & =x \cdot T_{n, 2}(x)+\frac{x}{n}\left(\frac{n}{n+t}-x\right) T_{n, 2}^{\prime}(x) \\
& =\frac{(n-1)(n-2)}{n^{2}} x^{3}+\frac{3(n-1)}{n(n+t)} x^{2}+\frac{x}{(n+t)^{2}}
\end{aligned}
$$

Then

$$
A_{n, 3}=\frac{(n-1)(n-2)}{n^{2}}, \quad B_{n, 3}=\frac{3(n-1)}{n(n+t)}, \quad C_{n, 3}=\frac{1}{n(n+t)} .
$$

So that Theorem is true for Theorem is true for $r=1,2,3$.
Further suppose by induction that Theorem is true for r. Then applying the relations of recurrence one obtains:

$$
\begin{aligned}
A_{n, r+1} & =\frac{n-r}{n} \cdot A_{n, r}=\frac{n-r}{n} \cdot \frac{(n-1)_{r-1}}{n^{r-1}} \\
& =\frac{(n-1)_{r}}{n^{r}} . \\
B_{n, r+1} & =\frac{n-r+1}{n} \cdot B_{n, r}+\frac{r}{n+t} \cdot A_{n, r} \\
& =\frac{n-r+1}{n} \cdot \frac{r(r-1)}{2} \cdot \frac{(n-1)_{r-2}}{n^{r-2}(n+t)}+\frac{r}{n+t} \cdot \frac{(n-1)_{r-1}}{n^{r-1}} \\
& =\frac{(n-1)_{r-1}}{n^{r-1}(n+t)}\left(\frac{r(r-1)}{2}+r\right) \\
& =\frac{r(r+1)}{2} \cdot \frac{(n-1)_{r-1}}{n^{r-1}(n+t)} \\
C_{n, r+1} & =\frac{n-r+2}{n} \cdot C_{n, r}+\frac{r-1}{n+t} \cdot B_{n, r} \\
& =\frac{n-r+2}{n} \cdot \frac{r(r-1)(r-2)(3 r-5)}{24} \cdot \frac{(n-1)_{r-3}}{n^{r-3}(n+t)^{2}} \\
& =\frac{(n-1)_{r-2}}{n^{r-2}(n+t)^{2}} \cdot\left(\frac{r(r-1)(r-2)(3 r-5)}{24}+\frac{r(r-1)}{2} \cdot \frac{(n-1)_{r-2}}{n^{r-2}(n+t)}\right. \\
& =\frac{(r+1) r(r-1)(3 r-2)}{24} \cdot \frac{(n-1)_{r-2}}{n^{r-2}(n+t)^{2}}
\end{aligned}
$$

The main result is the following
Theorem 7. For any function $f \in C^{r}[0,1], r \geq 1$ any $t>0$ and $\varepsilon>0$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(S_{n}^{t}(f)(x)\right)^{(r)}=f^{(r)}(x), \text { uniformly for } x \in[0,1-\varepsilon] . \tag{7}
\end{equation*}
$$

Proof. We take $n \in \mathbb{N}$, such that $\frac{n}{n+t} \leq 1-\varepsilon$ and $n>r$.
For $r \in \mathbb{N}$, we denote the derivative operator of order r, by

$$
\begin{equation*}
D^{r}(f)(x)=f^{(r)}(x), f \in C^{r}[0,1], x \in[0,1] . \tag{8}
\end{equation*}
$$

The antiderivative operator of degree r, is defined by

$$
\begin{equation*}
J^{r}(f)(x)=\int_{0}^{x} \frac{(x-u)^{r-1}}{(r-1)!} f(u) d u, f \in C[0,1] \tag{9}
\end{equation*}
$$

Consider be the Kantorovich operator of order r attached to S_{n}^{t}, namely

$$
\begin{equation*}
K_{n, r}(f)(x)=\left(D^{r} \circ S_{n}^{t} \circ J^{r}\right)(f)(x) . \tag{10}
\end{equation*}
$$

Let show that operator $K_{n, r}$ is positive. If $g \in C\left[0, \frac{n}{n+t}\right]$ is positive then $J^{r}(g)$ has the derivative of order r positive and hence all the divided differences on $r+1$ points are positive. In particular his finite differences on $r+1$ point are positive. If in formula (6) we replace function f by function $J^{r}(g)$ one obtains

$$
\left(S_{n}^{t}\left(J^{r}(g)\right)\right)^{(r)}(x)=(n+t)_{r} \sum_{k=0}^{n-r} s_{n-r, k}\left(\frac{(n-1)_{r}(n+t)_{r}}{(n)_{r}(n+t-1)_{r}} x\right) \Delta_{\frac{1}{n+t}}^{r} J^{r}(g)\left(\frac{k}{n+t}\right) \geq 0
$$

But if this is equivalent with the condition that $K_{n, r}$ is positive operator.
Using (8),(9),(10), we deduce

$$
\begin{equation*}
D^{r}\left(S_{n}^{t}\right)(f)=K_{n, r}\left(f^{(r)}\right), \forall f \in C\left[0, \frac{n}{n+t}\right] \tag{11}
\end{equation*}
$$

So that, in order to prove the theorem it suffices to show that the sequence of operators $\left(K_{n, r}\right)_{n}$ satisfies the conditions of the theorem of Korovkin.

We begin with the following relation, which are true for any $x \in[0,1]$:

$$
\begin{aligned}
J_{r}\left(e_{0}\right)(x) & =\frac{x^{r}}{r!} \\
J_{r}\left(e_{1}\right)(x) & =\frac{x^{r+1}}{(r+1)!} \\
J_{r}\left(e_{2}\right)(x) & =2 \cdot \frac{x^{r+2}}{(r+2)!}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
K_{n, r}\left(e_{0}\right)(x) & =\left(S_{n}^{t}\left(\frac{e^{r}}{r!}\right)(x)\right)^{(r)} \\
& =\frac{1}{r!}\left(A_{n, r} x^{r}+B_{n, r} x^{r-1}+C_{n, r} x^{r-2}+R_{n, r}(x)\right)^{(r)} \\
& =A_{n, r}, \\
K_{n, r}\left(e_{1}\right)(x) & =\left(S_{n}^{t}\left(\frac{e^{r+1}}{(r+1)!}\right)(x)\right)^{(r)} \\
& =\frac{1}{(r+1)!}\left(A_{n, r+1} x^{r+1}+B_{n, r+1} x^{r}+C_{n, r+1} x^{r-1}+R_{n, r+1}(x)\right)^{(r)} \\
& =A_{n, r+1} \cdot x+\frac{1}{r+1} \cdot B_{n, r+1}, \\
K_{n, r}\left(e_{2}\right)(x) & =\left(S_{n}^{t}\left(\frac{2 \cdot e^{r+2}}{(r+2)!}\right)(x)\right)^{(r)} \\
& =\frac{2}{(r+2)!}\left(A_{n, r+2} x^{r+2}+B_{n, r+2} x^{r+1}+C_{n, r+2} x^{r}+R_{n, r+2}(x)\right)^{(r)} \\
& =A_{n, r+2} \cdot x^{2}+\frac{2}{r+2} \cdot B_{n, r+2} \cdot x+\frac{2 r!}{(r+2)!}+C_{n, r+2} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\lim _{n \rightarrow \infty} A_{n, s} & =1, \forall s \geq 1 \\
\lim _{n \rightarrow \infty} B_{n, s} & =0, \forall s \geq 2 \\
\lim _{n \rightarrow \infty} C_{n, s} & =0, \forall s \geq 3
\end{aligned}
$$

it results

$$
\begin{equation*}
\lim _{n \rightarrow \infty} K_{n, r}\left(e_{j}\right)(x)=e_{j}(x), \text { uniformly on }[0,1-\varepsilon], \text { for } j=0,1,2 . \tag{12}
\end{equation*}
$$

References

[1] Deo N., Noor M.A. and Siddiqui M.A., On approximation by a class of a new Bernstein type operators, Applied Mathematics and Computation 201 (2008) 604-612.
[2] DeVore R.A., Lorentz G.G., Constructive Approximation, Springer-Verlag Berlin Heidelberg, 1993.
[3] Gonska, H. and Păltănea, R.,Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Czechoslovak Mathematical Journal 60 (135) (2010), 783-799.
[4] Gonska, H., Heilmann, M. and Raşa, I., Kantorovich operators of order k, Numer. Func. Anal. Optimiz. 32 (2011), no. 7, 717-738.

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, email: alexandra.melesteu@unitbv.ro

