RESULT ON UNIQUENESS OF ENTIRE FUNCTIONS RELATED TO DIFFERENTIAL-DIFFERENCE POLYNOMIAL

Sujoy MAJUMDER ${ }^{*, 1}$ and Jeet SARKAR ${ }^{2}$

Abstract

In the paper, we use the idea of normal family to investigate the uniqueness problems of entire functions when certain types of differential-difference polynomials generated by them sharing a non-zero polynomial. Also we exhibit one example to show that the conditions of our results are the best possible.

2010 Mathematics Subject Classification: Primary 30D35, Secondary 30D30.
Key words: Entire function, difference polynomial and Normal Families.

1 Introduction, definitions and results

In the paper by meromorphic functions we shall always mean meromorphic functions in \mathbb{C}. We adopt the standard notations of value distribution theory (see [6]). For a non-constant meromorphic function f, we denote by $T(r, f)$ the Nevanlinna characteristic of f and by $S(r, f)$ any quantity satisfying $S(r, f)=o\{T(r, f)\}$ as $r \rightarrow \infty$ possibly outside a set of finite linear measure. A meromorphic function a is called a small function with respect to f, if $T(r, a)=S(r, f)$. The order of f is denoted and defined by

$$
\rho=\rho(f)=\limsup _{r \longrightarrow \infty} \frac{\log T(r, f)}{\log r} .
$$

For $a \in \mathbb{C} \cup\{\infty\}$, we define

$$
\delta(a ; f)=1-\limsup _{r \longrightarrow \infty} \frac{N(r, a ; f)}{T(r, f)} .
$$

[^0]Let f and g be two non-constant meromorphic functions. Let a be a small function with respect to f and g. We say that f and g share a CM (counting multiplicities) if $f-a$ and $g-a$ have the same zeros with the same multiplicities and we say that f and g share a IM (ignoring multiplicities) if we do not consider the multiplicities.

Let $k \in \mathbb{N} \cup\{0\} \cup\{\infty\}$. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f and g share a with weight k. We write f and g share (a, k) to mean that f and g share a with weight k. Also we note that f and g share a IM or CM if and only if f and g share $(a, 0)$ or (a, ∞) respectively.

Let b be a small function of both f and g. We denote by $\bar{N}_{E}(r, f=b=g)$ the reduced counting function of the common zeros of $f-b$ and $g-b$ with the same multiplicities. We say that f and g share $(b, \infty)_{*}$ if

$$
\begin{array}{ll}
& \bar{N}(r, b ; f)-\bar{N}_{E}(r, f=b=g)=O(\log r) \text { as } r \rightarrow \infty \\
\text { and } & \bar{N}(r, b ; g)-\bar{N}_{E}(r, f=b=g)=O(\log r) \text { as } r \rightarrow \infty .
\end{array}
$$

Let f be a transcendental meromorphic function and $n \in \mathbb{N}$. Many authors have investigated the value distributions of $f^{n} f^{\prime}$. In 1959, W. K. Hayman (see [5], Corollary of Theorem 9) proved the following theorem.

Theorem A. Let f be a transcendental meromorphic function and $n \in \mathbb{N}$ such that $n \geq 3$. Then $f^{n} f^{\prime}=1$ has infinitely many solutions.

The case $n=2$ was settled by Mues [11] in 1979. Bergweiler and Eremenko [1] showed that $f f^{\prime}-1$ has infinitely many zeros.

For an analogue of the above result, Laine and Yang [7] investigated the value distribution of difference products of entire functions in the following manner.

Theorem B. Let f be a transcendental entire function of finite order, $n \in \mathbb{N}$ and $c \in \mathbb{C} \backslash\{0\}$. Then for $n \geq 2, f^{n}(z) f(z+c)$ assumes every non-zero value infinitely often.

In 2010, X. G. Qi, L. Z. Yang and K. Liu [13] proved the following uniqueness result.

Theorem C. Let f and g be two transcendental entire functions of finite order, $\eta \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$ such that $n \geq 6$. If $f^{n}(z) f(z+\eta)$ and $g^{n}(z) g(z+\eta)$ share $(1, \infty)$, then either $f g=t_{1}$ or $f=t_{2} g$ for $t_{1}, t_{2} \in \mathbb{C} \backslash\{0\}$ such that $t_{1}^{n+1}=t_{2}^{n+1}=1$.

Let

$$
\begin{equation*}
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0} \tag{1.1}
\end{equation*}
$$

be a non zero polynomial, where $a_{n}(\neq 0), a_{n-1}, \ldots, a_{0}$ are complex constants. We denote Γ_{1}, Γ_{2} by $\Gamma_{1}=m_{1}+m_{2}, \Gamma_{2}=m_{1}+2 m_{2}$ respectively, where m_{1} is the
number of simple zeros of $P(z)$ and m_{2} is the number of multiple zeros of $P(z)$. Let $d=\operatorname{gcd}\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right)$, where $\lambda_{i}=n+1$ if $a_{i}=0, \lambda_{i}=i+1$ if $a_{i} \neq 0$.

In 2011, L. Xudan and W. C. Lin [16] considered the zeros of one certain type of difference polynomial and obtained the following result.

Theorem D. Let f be a transcendental entire function of finite order and $\eta \in$ $\mathbb{C} \backslash\{0\}$. Then for $n>\Gamma_{1}, P(f(z)) f(z+\eta)-\alpha(z)=0$ has infinitely many solutions, where $\alpha(z)(\not \equiv 0)$ is a small function with respect to f.

In the same paper the authors also proved the following uniqueness result corresponding to Theorem D.

Theorem E. Let f and g be two transcendental entire functions of finite order, $\eta \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$ such that $n>2 \Gamma_{2}+1$. If $P(f(z)) f(z+\eta)$ and $P(g(z)) g(z+\eta)$ share $(1, \infty)$, then one of the following cases hold:
(i) $f \equiv t g$, where $t^{d}=1$;
(ii) $R(f, g) \equiv 0$ where $R\left(w_{1}, w_{2}\right)=P\left(w_{1}\right) w_{1}(z+\eta)-P\left(w_{2}\right) w_{2}(z+\eta)$;
(iii) $f=e^{\alpha}$ and $g=e^{\beta}$, where α, β are non-constant polynomials and $\alpha+\beta=$ $c \in \mathbb{C}$ satisfying $a_{n}^{2} e^{(n+1) c}=1$.

We recall the following example due to L. Xudan and W. C. Lin [16].
Example 1. Let $P(z)=(z-1)^{6}(z+1)^{6} z^{11}, f(z)=\sin z, g(z)=\cos z$ and $\eta=2 \pi$. It is easily seen that $n>2 \Gamma_{2}+1$ and $P(f(z)) f(z+\eta) \equiv P(g(z)) g(z+\eta)$. Therefore $P(f(z)) f(z+\eta)$ and $P(g(z)) g(z+\eta)$ share 1 CM. It is also clear that $R(f, g) \equiv 0$, where $R\left(w_{1}, w_{2}\right)=P\left(w_{1}\right) w_{1}(z+\eta)-P\left(w_{2}\right) w_{2}(z+\eta)$ but $f \not \equiv$ tg for $t \in \mathbb{C} \backslash\{0\}$ satisfying $t^{m}=1$, where $m \in \mathbb{Z}^{+}$.

From the above example, we see that f and g do not share $(0, \infty)$. Regarding this one may ask the following question.

Question 1. What can be said about the relationship between f and g, if f and g share $(0, \infty)$ in Theorem E?

Keeping the above question in mind, recently W. L. Li and X. M. Li [8] proved the following results.

Theorem F. Let f and g be two transcendental entire functions of finite order such that f and g share $(0, \infty), \eta \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$ such that $n>2 \Gamma_{2}+1$. If $P(f(z)) f(z+\eta)$ and $P(g(z)) g(z+\eta)$ share $(1, \infty)$, then one of the following two cases hold:
(i) $f \equiv t g$, where $t^{d}=1$;
(ii) $f=e^{\alpha}$ and $g=c e^{-\alpha}$, where α is a non-constant polynomial and $c \in \mathbb{C} \backslash\{0\}$ satisfying $a_{n}^{2} c^{n+1}=1$.

Theorem G. Let f and g be two transcendental entire functions of finite order such that f and g share $(0, \infty), \eta \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$ such that $n>3 \Gamma_{1}+2 \Gamma_{2}+4$. If $P(f(z)) f(z+\eta)$ and $P(g(z)) g(z+\eta)$ share $(1,0)$, then one of the following two cases hold:
(i) $f \equiv t g$, where $t^{d}=1$;
(ii) $f=e^{\alpha}$ and $g=c e^{-\alpha}$, where α is a non-constant polynomial and $c \in \mathbb{C} \backslash\{0\}$ satisfying $a_{n}^{2} c^{n+1}=1$.

Regarding Theorems F and G, P. Sahoo and S. Seikh [14] asked the following question.

Question 2. What happen if one consider the difference polynomials of the form $(P(f(z)) f(z+\eta))^{k}$, where $k \in \mathbb{N} \cup\{0\}$?

Keeping the above question in mind, in 2016, P. Sahoo and S. Seikh [14] proved the following results.

Theorem H. Let f be a transcendental entire function with finite order and $\alpha(z)(\not \equiv) 0$ be a small function with respect to f. Let $\eta \in \mathbb{C} \backslash\{0\}, k \in \mathbb{N} \cup\{0\}$ and $n \in \mathbb{N}$. Then for $n>\Gamma_{1}+k m_{2},(P(f(z)) f(z+\eta))^{k}-\alpha(z)=0$ has infinitely many solutions.

Theorem I. Let f and g be two transcendental entire functions of finite order such that f and g share $(0, \infty)$ and $\eta \in \mathbb{C} \backslash\{0\}$. Let $k \in \mathbb{N} \cup\{0\}$ and $n \in \mathbb{N}$ such that $n>2 \Gamma_{2}+2 k m_{2}+1$. If $P(f(z)) f(z+\eta)$ and $P(g(z)) g(z+\eta)$ share $(1, \infty)$, then one of the following two cases hold:
(i) $f \equiv t g$, where $t^{d}=1$;
(ii) $f=e^{\alpha}$ and $g=c e^{-\alpha}$, where α is a non-constant polynomial and $c \in \mathbb{C} \backslash\{0\}$ satisfying $a_{n}^{2} c^{n+1}=1$.

Theorem J. Let f and g be two transcendental entire functions of finite order such that f and g share $(0, \infty)$ and $\eta \in \mathbb{C} \backslash\{0\}$. Let $k \in \mathbb{N} \cup\{0\}$ and $n \in \mathbb{N}$ such that $n>3 \Gamma_{1}+2 \Gamma_{2}+5 k m_{2}+4$. If $P(f(z)) f(z+\eta)$ and $P(g(z)) g(z+\eta)$ share $(1,0)$, then one of the following two cases hold:
(i) $f \equiv t g$, where $t^{d}=1$;
(ii) $f=e^{\alpha}$ and $g=c e^{-\alpha}$, where α is a non-constant polynomial and $c \in \mathbb{C} \backslash\{0\}$ satisfying $a_{n}^{2} c^{n+1}=1$.

In 2017, S. Majumder and R. Mandal [10] executed some errors in the proof of Theorems I and J which were discussed in Section 1 [10]. Also in the same paper S. Majumder and R. Mandal [10] asked the following question.

Question 3. Can one replace the condition " f and g share $(0, \infty)$ " in Theorems I and J by weaker one?

Keeping the above question in mind, S. Majumder and R. Mandal [10] obtained the following results which not only rectified Theorems I and J but also improved and generalized Theorems I and J.

Theorem K. Let f and g be two transcendental entire functions of finite order such that f and g share $(0, \infty)_{*}, c_{j} \in \mathbb{C}(j=1,2, \ldots, s)$ be distinct and let $k \in \mathbb{N} \cup\{0\}, n \in \mathbb{N}, \mu_{j} \in \mathbb{N} \cup\{0\}(j=1,2, \ldots, s)$ such that $n>2 \Gamma_{2}+2 k m_{2}+\sigma$, where $\sigma=\sum_{j=1}^{s} \mu_{j}>0$. Suppose that P has at least one zeros of multiplicities at least $k+1$ and $\delta(0 ; f)>0$ when $k \geq 1$. If $\left(P(f(z)) \prod_{j=1}^{s}\left(f\left(z+c_{j}\right)\right)^{\mu_{j}}\right)^{(k)}-p(z)$ and $\left(P(g(z)) \prod_{j=1}^{s}\left(g\left(z+c_{j}\right)\right)^{\mu_{j}}\right)^{(k)}-p(z)$ share $(0,2)$, where $p(z)$ is a non-zero polynomial with $\operatorname{deg}(p) \leq n+\sigma-1$, then one of the following cases hold.
(i) $f(z) \equiv \operatorname{tg}(z)$ for $t \in \mathbb{C} \backslash\{0\}$ such that $t^{d}=1$, where d is the $G C D$ of the elements of $J, J=\left\{p \in I: a_{p} \neq 0\right\}$ and $I=\{\sigma, \sigma+1, \ldots, n+\sigma\}$.
(ii) If $k=0$, then $f(z)=e^{\alpha(z)}$ and $g(z)=t e^{-\alpha(z)}$ where $\alpha(z)$ is a non-constant polynomial and $t \in \mathbb{C} \backslash\{0\}$ such that $a_{n}^{2} t^{n+\sigma}=c^{2}$.
(iii) If $p \notin \mathbb{C}$, then $f(z)=e^{\alpha(z)}$ and $g(z)=e^{\beta(z)}$, where α and β are two nonconstant polynomials such that $n \alpha(z)+\sum_{j=1}^{s} \mu_{j} \alpha\left(z+c_{j}\right)=c \int_{0}^{z} p(z) d z+b_{1}$, $n \beta(z)+\sum_{j=1}^{s} \mu_{j} \beta\left(z+c_{j}\right)=-c \int_{0}^{z} p(z) d z+b_{2}, b_{1}, b_{2}, c(\neq 0) \in \mathbb{C}$ such that $c^{2} a_{n}^{2} e^{b_{1}+b_{2}}=-1$.
(iv) If $p(z) \equiv b \in \mathbb{C} \backslash\{0\}$, then $f(z)=c_{1} e^{d z}$ and $g(z)=c_{2} e^{-d z}$, where $c_{1}, c_{2}, d(\neq$ $0) \in \mathbb{C}$ such that $(-1)^{k} a_{n}^{2}\left(c_{1} c_{2}\right)^{n+\sigma}(d(n+\sigma))^{2 k}=b^{2}$.

Theorem L. Under the same situation in Theorem K if further $n>\frac{1}{2} \Gamma_{1}+2 \Gamma_{2}+$ $\frac{3}{2} k m_{2}+\frac{3}{2} \sigma$ and $\left(P(f(z)) \prod_{j=1}^{s}\left(f\left(z+c_{j}\right)\right)^{\mu_{j}}\right)^{(k)}-p(z)$ and $\left(P(g(z)) \prod_{j=1}^{s}(g(z+\right.$ $\left.\left.c_{j}\right)^{\mu_{j}}\right)^{(k)}-p(z)$ share $(0,1)$, then conclusions of Theorem K hold.

Theorem M. Under the same situation in Theorem K if further $n>3 \Gamma_{1}+2 \Gamma_{2}+$ $5 k m_{2}+4 \sigma$ and $\left(P(f(z)) \prod_{j=1}^{s}\left(f\left(z+c_{j}\right)\right)^{\mu_{j}}\right)^{(k)}-p(z)$ and $\left(P(g(z)) \prod_{j=1}^{s}(g(z+\right.$ $\left.\left.\left.c_{j}\right)\right)^{\mu_{j}}\right)^{(k)}-p(z)$ share $(0,0)$, then conclusions of Theorem K hold.

Remark 1. It is easy to see that the conditions " f and g share $(0, \infty)_{*}$ " and " $\delta(0 ; f)>0$ " in Theorem K are sharp by the following example.

Example 2. [16] Let $P(z)=(z-1)^{6}(z+1)^{6} z^{11}, f(z)=\sin z, g(z)=\cos z$ and $\eta=2 \pi$. Clearly f and g do not share $(0, \infty)_{*}$ and $\delta(0 ; f)=0$. Also it is easily seen that $n>2 \Gamma_{2}+2 k m_{2}+1$ and $(P(f(z)) f(z+\eta))^{(k)} \equiv(P(g(z)) g(z+\eta))^{(k)}$. Therefore $(P(f(z)) f(z+\eta))^{(k)}$ and $(P(g(z)) g(z+\eta))^{(k)}$ share $(1, \infty)$, but conclusions of Theorem K do not hold.

Theorems K, L and M suggest the following questions as an open problems.
Question 4. Can one remove the condition " $\operatorname{deg}(p) \leq n+\sigma-1$ " in Theorems $K-M$?

Question 5. Can one deduce generalized results in which Theorems $K-M$ will be included?

Throughout the paper we use the following notations:
For two transcendental entire functions f, g and $c_{0} \in \mathbb{C}$, we define $f_{1}(z)=f(z)-c_{0}$ and $g_{1}(z)=g(z)-c_{0}$. For $z_{1}=z-c_{0}$, we define

$$
\begin{aligned}
P(z)=\sum_{i=0}^{n} a_{i}\left(z-c_{0}+c_{0}\right)^{i} & =\sum_{i=0}^{n} a_{i}\left(z_{1}+c_{0}\right)^{i} \\
& =a_{1, n} z_{1}^{n}+a_{1, n-1} z_{1}^{n-1}+\ldots+a_{1,0}=P_{1}\left(z_{1}\right), \text { say }
\end{aligned}
$$

where $a_{1, i} \in \mathbb{C}(i=0,1, \ldots, n)$ and $a_{1, n}=a_{n}$. Also throughout the paper we define $F_{1}(z)=\prod_{j=1}^{s}\left(f\left(z+c_{j}\right)-c_{0}\right)^{\mu_{j}}=\prod_{j=1}^{s}\left(f_{1}\left(z+c_{j}\right)\right)^{\mu_{j}}$ and $G_{1}(z)=$ $\prod_{j=1}^{s}\left(g\left(z+c_{j}\right)-c_{0}\right)^{\mu_{j}}=\prod_{j=1}^{s}\left(g_{1}\left(z+c_{j}\right)\right)^{\mu_{j}}$, where $c_{j} \in \mathbb{C} \backslash\{0\}$ are distinct for $j=1,2, \ldots, s$ and $\mu_{j} \in \mathbb{N} \cup\{0\}$ such that $\sigma=\sum_{j=1}^{s} \mu_{j}>0$.

2 Main results

Now taking the possible answers of the above Questions 4 and 5 into backdrop we obtain the following results.

Theorem 1. Let f and g be two transcendental entire functions of finite order such that f and g share $\left(c_{0}, \infty\right)_{*}$, where $c_{0} \in \mathbb{C}$ and let $k \in \mathbb{N} \cup\{0\}$ and $n \in \mathbb{N}$ such that $n>2 \Gamma_{2}+2 k m_{2}+\sigma$. Suppose that P_{1} has at least one zeros of multiplicities at least $k+1$ and $\delta\left(c_{0} ; f\right)>0$ when $k \geq 1$. If $\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)}-p$ and $\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)}-p$ share (0,2), where p is a non-zero polynomial, then one of the following cases hold.
(1) $f-c_{0} \equiv t\left(g-c_{0}\right)$ for $t \in \mathbb{C} \backslash\{0\}$ such that $t^{d}=1$, where $d=\operatorname{gcd}(\sigma+p$: $p \in\{0,1, \ldots, n\}$ with $\left.a_{1, p} \neq 0\right)$.
(2) when $p \notin \mathbb{C}$, then one of the following cases holds.
(2)(i) $f(z)-c_{0}=e^{\alpha(z)}$ and $g(z)-c_{0}=e^{\beta(z)}$, where α and β are non-constant polynomials such that $n \alpha(z)+\sum_{j=1}^{s} \mu_{j} \alpha\left(z+c_{j}\right)=c \int_{0}^{z} p(z) d z+b_{1}$, $n \beta(z)+\sum_{j=1}^{s} \mu_{j} \beta\left(z+c_{j}\right)=-c \int_{0}^{z} p(z) d z+b_{2}, b_{1}, b_{2}, c(\neq 0) \in \mathbb{C}$ such that $c^{2} a_{n}^{2} e^{b_{1}+b_{2}}=-1$;
(2)(ii) $f(z)-c_{0}=h(z) e^{a z}$ and $g(z)-c_{0}=t h(z) e^{-a z}$, where h is a non-constant polynomial and $a, t \in \mathbb{C} \backslash\{0\}$ such that $a_{n}^{2} t^{n+\sigma} h^{2 n}(z)\left(\prod_{j=1}^{s} h\left(z+c_{j}\right)\right)^{2} \equiv$ $p^{2}(z)$.
(3) when $p(z) \equiv b$, then one of the following cases holds.
(3)(i) $f(z)-c_{0}=e^{\alpha(z)}$ and $g(z)-c_{0}=t e^{-\alpha(z)}$ where α is a non-constant polynomial and $t \in \mathbb{C} \backslash\{0\}$ such that $a_{n}^{2} t^{n+\sigma}=b^{2}$;
(3)(ii) $f(z)-c_{0}=c_{1} e^{d_{1} z}$ and $g(z)-c_{0}=c_{2} e^{-d_{1} z}$, where $c_{1}, c_{2}, d_{1} \in \mathbb{C} \backslash\{0\}$ such that $(-1)^{k} a_{n}^{2}\left(c_{1} c_{2}\right)^{n+\sigma}\left(d_{1}(n+\sigma)\right)^{2 k}=b^{2}$.

Theorem 2. Under the same situation in Theorem 1 if further $n>\frac{1}{2} \Gamma_{1}+2 \Gamma_{2}+$ $\frac{3}{2} k m_{2}+\frac{3}{2} \sigma$ and $\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)}-p$ and $\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)}-p(z)$ share $(0,1)$, then conclusions of Theorem 1 hold.

Theorem 3. Under the same situation in Theorem 1 if further $n>3 \Gamma_{1}+2 \Gamma_{2}+$ $5 k m_{2}+4 \sigma$ and $\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)}-p$ and $\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)}-p$ share $(0,0)$, then conclusions of Theorem 1 hold.

Remark 2. It is easy to see that the conditions " f and g share $(c, \infty)_{*}$ " and " $\delta(c ; f)>0$ " in Theorem 1 are sharp by the following example.

Example 3. Let $f(z)=\sin z+c, g(z)=\cos z+c, P_{1}(z)=(z-c-1)^{6}(z-c+$ $1)^{6}(z-c)^{11}$ and $\eta=2 \pi$. Clearly f and g do not share $(c, \infty)_{*}$. Note that

$$
f(z)=\sin z+c=\frac{e^{2 \mathrm{i} z}-1}{2 \mathrm{i} e^{\mathrm{i} z}}+c=\frac{e^{2 \mathrm{i} z}+2 c \mathrm{i} e^{\mathrm{i} z}-1}{2 \mathrm{i} e^{\mathrm{i} z}}=\frac{\left(e^{\mathrm{i} z}-\alpha\right)\left(e^{\mathrm{i} z}-\beta\right)}{2 \mathrm{i} e^{\mathrm{i} z}} \text {, say. }
$$

Clearly $\alpha, \beta \neq 0$. Also we have $T(r, f)=2 T\left(r, e^{\mathrm{i} z}\right)+S\left(r, e^{\mathrm{i} z}\right)$. Since $e^{\mathrm{i} z} \neq$ $0, \infty$, it follows that $N\left(r, \alpha ; e^{\mathrm{i} z}\right) \sim T\left(r, e^{\mathrm{i} z}\right)$ and $N\left(r, \beta ; e^{\mathrm{i} z}\right) \sim T\left(r, e^{\mathrm{i} z}\right)$. Therefore $N(r, c ; f)=N\left(r, \alpha ; e^{\mathrm{i} z}\right)+N\left(r, \beta ; e^{\mathrm{i} z}\right) \sim 2 T\left(r, e^{\mathrm{i} z}\right)$. Consequently

$$
\begin{aligned}
\delta(c ; f)=1-\limsup _{r \longrightarrow \infty} \frac{N(r, c ; f)}{T(r, f)} & =1-\limsup _{r \rightarrow \infty} \frac{N\left(r, \alpha ; e^{\mathrm{i} z}\right)+N\left(r, \beta ; e^{\mathrm{i} z}\right)}{2 T\left(r, e^{\mathrm{i} z}\right)+S\left(r, e^{\mathrm{i} z}\right)} \\
& =1-\limsup _{r \rightarrow \infty} \frac{2 T\left(r, e^{\mathrm{i} z}\right)}{2 T\left(r, e^{\mathrm{i} z}\right)+S\left(r, e^{\mathrm{i} z}\right)}=0 .
\end{aligned}
$$

Also we see that $n>2 \Gamma_{62}+2 k m_{62}+1$ and $\left(P_{1}(f(z)-c)(f(z+\eta)-c)\right)^{(k)} \equiv$ $\left(P_{1}(g(z)-c)(g(z+\eta)-c)^{(k)}\right.$. Therefore $\left(P_{1}(f(z)-c)(f(z+\eta)-c)\right)^{(k)}$ and $\left(P_{1}(g(z)-c)(g(z+\eta)-c)\right)^{(k)}$ share $(1, \infty)$, but the conclusions of Theorem 1 do not hold.

3 Lemmas

Let h be a meromorphic function in \mathbb{C}. Then h is called a normal function if there exists a positive real number M such that $h^{\#}(z) \leq M \forall z \in \mathbb{C}$, where

$$
h^{\#}(z)=\frac{\left|h^{\prime}(z)\right|}{1+|h(z)|^{2}}
$$

denotes the spherical derivative of h.
Let \mathcal{F} be a family of meromorphic functions in a domain $D \subset \mathbb{C}$. We say that \mathcal{F} is normal in D if every sequence $\left\{f_{n}\right\}_{n} \subseteq \mathcal{F}$ contains a subsequence which converges spherically and uniformly on the compact subsets of D (see [15]).

For two non-constant entire functions F and G we define the auxiliary function H as follows

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) . \tag{3.1}
\end{equation*}
$$

Lemma 1. [17] Let f be a non-constant meromorphic function and let $a_{n}(\not \equiv 0)$, a_{n-1}, \ldots, a_{0} be meromorphic functions such that $T\left(r, a_{i}\right)=S(r, f)$ for $i=$ $0,1,2, \ldots, n$. Then $T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)$.

Lemma 2. [3] Let f be a meromorphic function of finite order ρ and let $c \in \mathbb{C} \backslash\{0\}$ be fixed. Then for each $\varepsilon>0$, we have

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)+m\left(r, \frac{f(z)}{f(z+c)}\right)=O\left(r^{\rho-1+\varepsilon}\right) .
$$

Lemma 3. [4] Let f be a non-constant meromorphic function of finite order and $c \in \mathbb{C}$. Then

$$
\begin{array}{ll}
& N(r, 0 ; f(z+c)) \leq N(r, 0 ; f(z))+S(r, f) \\
\text { and } \quad \bar{N}(r, 0 ; f(z+c)) \leq \bar{N}(r, 0 ; f(z))+S(r, f) .
\end{array}
$$

Lemma 4. Let f be a transcendental entire function of finite order and $n \in \mathbb{N}$. Then for each $\varepsilon>0$, we have $T\left(r, P_{1}\left(f_{1}\right) F_{1}\right)=(n+\sigma) T\left(r, f_{1}\right)+O\left(r^{\rho-1+\varepsilon}\right)$.

Proof. Proof follows directly from Lemma 2.6 [10].
Lemma 5. [9] Let h be a non-constant meromorphic function such that $\bar{N}(r, 0 ; h)+$ $\bar{N}(r, \infty ; h)=S(r, h)$. Let $f=a_{0} h^{p}+a_{1} h^{p-1}+\ldots+a_{p}$ and $g=b_{0} h^{q}+b_{1} h^{q-1}+\ldots+b_{q}$ be polynomials in h with co-efficients $a_{0}, a_{1}, \ldots, a_{p}, b_{0}, b_{1}, \ldots, b_{q}$ being small functions of h and $a_{0} b_{0} a_{p} \neq 0$. If $q \leq p$, then $m\left(r, \frac{g}{f}\right)=S(r, h)$.

Lemma 6. Let f and g be two transcendental entire functions of finite order, $k \in \mathbb{N} \cup\{0\}$ and $n \in \mathbb{N}$ such that $n>2 \Gamma_{1}+2 k m_{2}+\sigma$. Let $F=\frac{\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)}}{\alpha}$ and $G=\frac{\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)}}{\alpha}$, where α is a small function of f and g. If $H \equiv 0$, then one of the following two cases holds.
(i) $\left.\left(P_{1}\left(f_{1}\right) F_{1}\right)^{\mu_{j}}\right)^{(k)} \equiv\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)}$,
(ii) $\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)}\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)} \equiv \alpha^{2}$, where $\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)}-\alpha$ and $\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)}-\alpha$ share $(0, \infty)$.

Proof. Proof follows directly from Lemma 2.8 [10].
Lemma 7. Let f and g be two transcendental entire functions of finite order such that f and g share $\left(c_{0}, \infty\right)_{*}$. Let $k \in \mathbb{N} \cup\{0\}$ and $n \in \mathbb{N}$ such that $n>$ $2 m_{1}+2 k m_{2}+\sigma$. If $\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)} \equiv\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)}$, then $f-c_{0} \equiv t\left(g-c_{0}\right)$ for $t \in \mathbb{C} \backslash\{0\}$ such that $t^{d}=1$, where $d=\operatorname{gcd}\left(\sigma+p: p \in\{0,1, \ldots, n\}\right.$ with $\left.a_{1, p} \neq 0\right)$.

Proof. Suppose $\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)} \equiv\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)}$. Using Lemma 2.9 [10], one can easily obtain

$$
\begin{equation*}
P_{1}\left(f_{1}(z)\right) \prod_{j=1}^{s}\left(f_{1}\left(z+c_{j}\right)\right)^{\mu_{j}} \equiv P_{1}\left(g_{1}(z)\right) \prod_{j=1}^{s}\left(g_{1}\left(z+c_{j}\right)\right)^{\mu_{j}} . \tag{3.2}
\end{equation*}
$$

Let $h=\frac{f_{1}}{g_{1}}$. Now by putting $f_{1}=h g_{1}$ into (3.2), we get

$$
\begin{align*}
& a_{1, n} g_{1}^{n}(z)\left(h^{n}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1\right) \tag{3.3}\\
& +a_{1, n-1} g_{1}^{n-1}(z)\left(h^{n-1}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1\right)+\ldots \\
& +a_{1,1} g_{1}(z)\left(h(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1\right)+a_{1,0}\left(\prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1\right) \equiv 0 .
\end{align*}
$$

First we suppose $h \in \mathbb{C} \backslash\{0\}$. Now from (3.3), we get

$$
\begin{array}{r}
a_{1, n} g_{1}^{n}\left(h^{n+\sigma}-1\right)+a_{1, n-1} g_{1}^{n-1}\left(h^{n+\sigma-1}(z)-1\right)+ \\
\quad \ldots+a_{1,1} g_{1}\left(h^{\sigma+1}-1\right)+a_{1,0}\left(h^{\sigma}-1\right) \equiv 0
\end{array}
$$

which implies that $h^{d}=1$, where $d=\operatorname{gcd}\left(\sigma+p: p \in\{0,1, \ldots, n\}\right.$ with $\left.a_{1, p} \neq 0\right)$. Thus $f-c_{0} \equiv t\left(g-c_{0}\right)$ for a constant t such that $t^{d}=1$, where $d=\operatorname{gcd}(\sigma+p$: $p \in\{0,1, \ldots, n\}$ with $\left.a_{1, p} \neq 0\right)$.
Next we suppose $h \notin \mathbb{C}$. Since f_{1} and g_{1} share $(0, \infty)_{*}$, it follows that h is a non-constant meromorphic function such that $N(r, 0 ; h)+N(r, \infty ; h)=O(\log r)$ as $r \rightarrow \infty$. Also we note that $\rho(h) \leq \max \{\rho(f), \rho(g)\}<\infty$, i.e., h is of finite order.
Suppose that h is a rational function. Let $P_{1}\left(f_{1}\right)=a_{1, n} f_{1}^{n}$. Then from (3.3), we get

$$
\begin{equation*}
h^{n}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}} \equiv 1 \text {, i.e., } h^{n}(z)=\frac{1}{\prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}} . \tag{3.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
h=\frac{h_{1}}{h_{2}}, \tag{3.5}
\end{equation*}
$$

where h_{1} and h_{2} are two nonzero relatively prime polynomials. From (3.5), we have

$$
\begin{equation*}
T(r, h)=\max \left\{\operatorname{deg}\left(h_{1}\right), \operatorname{deg}\left(h_{2}\right)\right\} \log r+O(1) \tag{3.6}
\end{equation*}
$$

Now from (3.4), (3.5) and (3.6), we have

$$
\begin{align*}
& n \max \left\{\operatorname{deg}\left(h_{1}\right), \operatorname{deg}\left(h_{2}\right)\right\} \log r \tag{3.7}\\
= & T\left(r, h^{n}\right)+O(1) \\
\leq & T\left(r, \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}\right)+O(1) \\
\leq & \sigma \max \left\{\operatorname{deg}\left(h_{1}\right), \operatorname{deg}\left(h_{2}\right)\right\} \log r+O(1) .
\end{align*}
$$

We see that $\max \left\{\operatorname{deg}\left(h_{2}\right), \operatorname{deg}\left(h_{3}\right)\right\} \geq 1$. Since $n>\sigma$, we arrive at a contradiction from (3.7).
Let $P_{1}\left(f_{1}\right) \not \equiv a_{1, n} f_{1}^{n}$. Suppose $a_{1, p}$ is the last non-vanishing term of $P_{1}\left(z_{1}\right)$, where $p \in\{0,1, \ldots, n-1\}$. Then from (3.3), we have

$$
\begin{align*}
& a_{1, n} g_{1}^{n-p}(z)\left(h^{n}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1\right) \tag{3.8}\\
& +a_{1, n-1} g_{1}^{n-p-1}(z)\left(h^{n-1}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1\right)+\ldots \\
& +a_{1, p+1} g_{1}(z)\left(h^{p+1}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1\right) \\
& \equiv-a_{1, p}\left(h^{p}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1\right) .
\end{align*}
$$

Now from Lemma 1 and (3.8), we get $(n-p) T\left(r, g_{1}\right)=S\left(r, g_{1}\right)$, which is a contradiction.
Next we suppose that h is a transcendental meromorphic function. We claim that

$$
h^{n}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}} \not \equiv 1
$$

If not, suppose

$$
\begin{equation*}
h^{n}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}} \equiv 1 \text {, i.e., } h^{n}(z)=\frac{1}{\prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}} . \tag{3.9}
\end{equation*}
$$

Now by Lemmas 1,2 and 3, we get

$$
\begin{aligned}
n T(r, h) & =T\left(r, h^{n}\right)+S(r, h) \\
& =T\left(r, \frac{1}{\prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}}\right)+S(r, h) \\
& \leq \sum_{j=1}^{s} \mu_{j} N\left(r, 0 ; h\left(z+c_{j}\right)\right)+\sum_{j=1}^{s} \mu_{j} m\left(r, \frac{1}{h\left(z+c_{j}\right)}\right)+S(r, h) \\
& \leq \sum_{j=1}^{s} \mu_{j} N(r, 0 ; h(z))+\sum_{j=1}^{s} \mu_{j} m\left(r, \frac{1}{h(z)}\right)+S(r, h) \\
& \leq \sigma T(r, h)+S(r, h),
\end{aligned}
$$

which is a contradiction.
Let $P_{1}\left(f_{1}\right)=a_{1, n} f_{1}^{n}$. Then from (3.3), we get $h^{n}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}} \equiv 1$, which
is a contradiction.
Let $P_{1}\left(f_{1}\right) \not \equiv a_{1, n} f_{1}^{n}$. Suppose $a_{1, p}$ is the last non-vanishing term of $P_{1}\left(z_{1}\right)$, where $p \in\{0,1, \ldots, n-1\}$. Then from (3.8), we have

$$
\begin{align*}
& a_{1, n-1} g_{1}^{n-p-1}(z) \frac{h^{n-1}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1}{h^{n}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1}+\ldots \tag{3.10}\\
& +a_{1, p+1} g_{1}(z) \frac{h^{p+1}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1}{h^{n}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1} \\
& +a_{1, p} \frac{h^{p}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1}{h^{n}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1} \equiv-a_{1, n} g_{1}^{n-p},
\end{align*}
$$

where $p \in\{0,1, \ldots, n-1\}$. Let

$$
H_{i}(z)=\frac{h^{i}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1}{h^{n}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}-1},
$$

where $i=p, p+1, \ldots, n-1$. Then we have

$$
H_{i}(z)=\frac{h^{\sigma+i}(z) \frac{\prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}}{h^{\sigma}(z)}-1}{h^{n+\sigma}(z) \frac{\prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}}}{h^{\sigma}(z)}-1} .
$$

Since h is a transcendental meromorphic function, we have $S(r, h)+O(\log r)=$ $S(r, h)$. Now using Lemma 2, we get

$$
\begin{aligned}
& T\left(r, \prod_{j=1}^{s}\left(\frac{h\left(z+c_{j}\right)}{h(z)}\right)^{\mu_{j}}\right) \\
\leq & \sum_{j=1}^{s} \mu_{j} T\left(r, \frac{h\left(z+c_{j}\right)}{h(z)}\right) \\
\leq & \sum_{j=1}^{s} \mu_{j}\left(m\left(r, \frac{h\left(z+c_{j}\right)}{h(z)}\right)+N\left(r, \infty ; \frac{h\left(z+c_{j}\right)}{h(z)}\right)\right) \\
\leq & \sum_{j=1}^{s} \mu_{j}(S(r, h)+O(\log r))=S(r, h) .
\end{aligned}
$$

This implies that $\prod_{j=1}^{s}\left(\frac{h\left(z+c_{j}\right)}{h(z)}\right)^{\mu_{j}} \in S(h)$. Since $n+\sigma>i+\sigma$, using Lemma 5, we get $m\left(r, H_{i}\right)=S(r, h)$, where $i=p, p+1, \ldots, n-1$.
Also Lemma 4 and (3.2) yield $T\left(r, f_{1}\right)+S\left(r, f_{1}\right)=T\left(r, g_{1}\right)+S\left(r, g_{1}\right)$. Since $h=\frac{f_{1}}{g_{1}}$, it follows that $T(r, h) \leq 2 T\left(r, g_{1}\right)+S\left(r, g_{1}\right)$ and $S(r, h)$ can be replaced by $S\left(r, g_{1}\right)$. Therefore $m\left(r, H_{i}\right)=S\left(r, g_{1}\right)$, where $i=p, p+1, \ldots, n-1$. For the sake of simplicity we assume that $a_{1, n-1} \neq 0$. Then from (3.10), we have

$$
\begin{equation*}
-a_{1, n} g_{1}^{n-p} \equiv a_{1, n-1} g_{1}^{n-p-1} H_{n-1}+\ldots+a_{1, p+1} g_{1} H_{p+1}+a_{1, p} H_{p} \tag{3.11}
\end{equation*}
$$

where $p \in\{0,1, \ldots, n-1\}$. Now from (3.11), we obtain

$$
\begin{aligned}
& (n-p) m\left(r, g_{1}\right) \\
\leq & m\left(r,-a_{1, n} g_{1}^{n-p}\right)+O(1) \\
= & m\left(r, a_{1, n-1} g_{1}^{n-p-1} H_{n-1}+\ldots+a_{1, p+1} g_{1} H_{p+1}+a_{1, p} H_{p}\right)+O(1) \\
\leq & m\left(r, a_{1, n-1} g_{1}^{n-p-1} H_{n-1}+\ldots+a_{1, p+1} g_{1} H_{p+1}\right)+S\left(r, g_{1}\right) \\
\leq & m\left(r, g_{1}\right)+m\left(r, a_{1, n-1} g_{1}^{n-p-2} H_{n-1}+\ldots+a_{1, p+1} H_{p+1}\right)+S\left(r, g_{1}\right) \\
\leq & m\left(r, g_{1}\right)+m\left(r, a_{1, n-1} g_{1}^{n-p-2} H_{n-1}+\ldots+a_{1, p+2} g_{1} H_{p+2}\right)+S\left(r, g_{1}\right) \\
\leq & 2 m\left(r, g_{1}\right)+m\left(r, a_{1, n-1} g_{1}^{n-p-3} H_{n-1}+\ldots+a_{1, p+2} H_{p+2}\right)+S\left(r, g_{1}\right) \\
\leq & \cdots \cdots \cdots \cdots \cdot \\
\leq & (n-p-1) m\left(r, g_{1}\right)+S\left(r, g_{1}\right) .
\end{aligned}
$$

This intimates that $m\left(r, g_{1}\right)=S\left(r, g_{1}\right)$. Since g_{1} is a transcendental entire function, $N\left(r, \infty ; g_{1}\right)=0$ and so $T\left(r, g_{1}\right)=m\left(r, g_{1}\right)=S\left(r, g_{1}\right)$, which is a contradiction. This completes the proof.

Lemma 8. [21] Let F be a family of meromorphic functions in the unit disc Δ such that all zeros of functions in F have multiplicity greater than or equal to l and all poles of functions in F have multiplicity greater than or equal to j and α be a real number satisfying $-l<\alpha<j$. Then F is not normal in any neighborhood of $z_{0} \in \Delta$, if and only if there exist
(i) points $z_{n} \in \Delta, z_{n} \rightarrow z_{0}$,
(ii) positive numbers $\rho_{n}, \rho_{n} \rightarrow 0^{+}$and
(iii) functions $f_{n} \in F$,
such that $\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right) \rightarrow g(\zeta)$ spherically locally uniformly in \mathbb{C}, where g is a non-constant meromorphic function. The function g may be taken to satisfy the normalisation $g^{\#}(\zeta) \leq g^{\#}(0)=1(\zeta \in \mathbb{C})$.

Lemma 9. [2] Let f be a meromorphic function on \mathbb{C} with finitely many poles. If f has bounded spherical derivative on \mathbb{C}, then f is of order at most 1 .

Lemma 10. [6] If f is an integral function of finite order, then

$$
\sum_{a \neq \infty} \delta(a, f) \leq \delta\left(0, f^{\prime}\right)
$$

Lemma 11. [[6], Lemma 3.5] Suppose that F is meromorphic in a domain D and set $f=\frac{F^{\prime}}{F}$. Then for $n \in \mathbb{N}$,

$$
\frac{F^{(n)}}{F}=f^{n}+\frac{n(n-1)}{2} f^{n-2} f^{\prime}+a_{n} f^{n-3} f^{\prime \prime}+b_{n} f^{n-4}\left(f^{\prime}\right)^{2}+P_{n-3}(f)
$$

where $a_{n}=\frac{1}{6} n(n-1)(n-2), b_{n}=\frac{1}{8} n(n-1)(n-2)(n-3)$ and $P_{n-3}(f)$ is a differential polynomial with constant coefficients, which vanishes identically for $n \leq 3$ and has degree $n-3$ when $n>3$.

Lemma 12. Let f and g be two transcendental entire functions of finite order such that f and g share $\left(c_{0}, \infty\right)_{*}$ and $\delta\left(c_{0}, f\right)>0$. Let $k \in \mathbb{N} \cup\{0\}$, $n \in \mathbb{N}, \mu_{j} \in \mathbb{N} \cup\{0\}(j=1,2, \ldots, s)$ and p be a non-zero polynomial. Suppose $\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)}\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)} \equiv p^{2}$, where $\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)}-p$ and $\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)}-p$ share $(0, \infty)$. Now
(1) when $p \notin \mathbb{C}$, then one of the following cases holds.
(1)(i) $f(z)-c_{0}=e^{\alpha(z)}$ and $g(z)-c_{0}=e^{\beta(z)}$, where α and β are non-constant polynomials such that $n \alpha(z)+\sum_{j=1}^{s} \mu_{j} \alpha\left(z+c_{j}\right)=c \int_{0}^{z} p(z) d z+b_{1}$, $n \beta(z)+\sum_{j=1}^{s} \mu_{j} \beta\left(z+c_{j}\right)=-c \int_{0}^{z} p(z) d z+b_{2}, b_{1}, b_{2}, c(\neq 0) \in \mathbb{C}$ such that $c^{2} a_{n}^{2} e^{b_{1}+b_{2}}=-1$;
(1)(ii) $f(z)-c_{0}=h(z) e^{a z}$ and $g(z)-c_{0}=t h(z) e^{-a z}$, where h is a non-constant polynomial and $a, t \in \mathbb{C} \backslash\{0\}$ such that $a_{n}^{2} t^{n+\sigma} h^{2 n}(z)\left(\prod_{j=1}^{s} h\left(z+c_{j}\right)\right)^{2} \equiv$ $p^{2}(z)$.
(2) when $p(z) \equiv b$, then one of the following cases holds.
(2)(i) $f(z)-c_{0}=e^{\alpha(z)}$ and $g(z)-c_{0}=t e^{-\alpha(z)}$ where α is a non-constant polynomial and $t \in \mathbb{C} \backslash\{0\}$ such that $a_{n}^{2} t^{n+\sigma}=b^{2}$;
(2)(ii) $f(z)-c_{0}=c_{1} e^{d_{1} z}$ and $g(z)-c_{0}=c_{2} e^{-d_{1} z}$, where $c_{1}, c_{2}, d_{1} \in \mathbb{C} \backslash\{0\}$ such that $(-1)^{k} a_{n}^{2}\left(c_{1} c_{2}\right)^{n+\sigma}\left(d_{1}(n+\sigma)\right)^{2 k}=b^{2}$.

Proof. Suppose

$$
\begin{equation*}
\left.\left(P_{1}\left(f_{1}\right) F_{1}\right)^{\mu_{j}}\right)^{(k)}\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)} \equiv p^{2} . \tag{3.12}
\end{equation*}
$$

Using Lemma 2.12 [10], one can easily prove that $\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)}$ and $\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)}$ share $(0, \infty)$. Now we want to show that $P_{1}\left(z_{1}\right)=a_{1, n} z_{1}^{n}$. First we suppose $k=0$. Then from (3.12) we get

$$
\begin{equation*}
P_{1}\left(f_{1}\right) F_{1} P_{1}\left(g_{1}\right) G_{1} \equiv p^{2} . \tag{3.13}
\end{equation*}
$$

From (3.13), we have $N\left(r, 0 ; P_{1}\left(f_{1}\right)\right)=O(\log r)$. Clearly $P_{1}\left(z_{1}\right)$ can not have more than one distinct zeros otherwise we get a contradiction from the second fundamental theorem. Hence we conclude that $P_{1}\left(z_{1}\right)$ has only one zero and so we may write $P_{1}\left(f_{1}\right)=a_{1, n}\left(f_{1}-a\right)^{n}$, where $a \in \mathbb{C}$. Since f_{1} and g_{1} are transcendental entire functions of finite order, from (3.13) we obtain that

$$
\begin{gather*}
f_{1}(z)=\alpha_{1}(z) e^{\beta_{1}(z)}+a, g_{1}(z)=\alpha_{2}(z) e^{\beta_{2}(z)}+a \tag{3.14}\\
F_{1}(z)=\alpha_{3}(z) e^{\beta_{3}(z)} \text { and } G_{1}(z)=\alpha_{4}(z) e^{\beta_{4}(z)}, \tag{3.15}
\end{gather*}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ are non-zero polynomials and $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ are non-constant polynomials. Now from (3.14) and (3.15), we have

$$
\prod_{j=1}^{s}\left(\alpha_{1}\left(z+c_{j}\right) e^{\beta_{1}\left(z+c_{j}\right)}+a\right)^{\mu_{j}}=\alpha_{3}(z) e^{\beta_{3}(z)}
$$

and so we have $\bar{N}\left(r,-a ; \alpha_{1}\left(z+c_{1}\right) e^{\beta_{1}\left(z+c_{1}\right)}\right)=O(\log r)$. Now using Lemma 1, we get from the second fundamental theorem that

$$
\begin{aligned}
& T\left(r, e^{\beta_{1}\left(z+c_{1}\right)}\right) \\
= & T\left(r, \alpha_{1}\left(z+c_{1}\right) e^{\beta_{1}\left(z+c_{1}\right)}\right)+S\left(r, \alpha_{1}\left(z+c_{1}\right) e^{\beta_{1}\left(z+c_{1}\right)}\right) \\
\leq & \bar{N}\left(r, \infty ; \alpha_{1}\left(z+c_{1}\right) e^{\beta_{1}\left(z+c_{1}\right)}\right)+\bar{N}\left(r, 0 ; \alpha_{1}\left(z+c_{1}\right) e^{\beta_{1}\left(z+c_{1}\right)}\right) \\
& +\bar{N}\left(r,-a ; \alpha_{1}\left(z+c_{1}\right) e^{\beta_{1}\left(z+c_{1}\right)}\right)+S\left(r, \alpha_{1}\left(z+c_{1}\right) e^{\beta_{1}\left(z+c_{1}\right)}\right) \\
= & O(\log r)+S\left(r, \alpha_{1}\left(z+c_{1}\right) e^{\beta_{1}\left(z+c_{1}\right)}\right)=S\left(r, \alpha_{1}\left(z+c_{1}\right) e^{\beta_{1}\left(z+c_{1}\right)}\right),
\end{aligned}
$$

which is impossible. Hence $a=0$ and so $P_{1}\left(z_{1}\right)=a_{1, n} z_{1}^{n}$. Therefore

$$
\left(a_{n} f_{1}^{n} F_{1}\right)\left(a_{n} g_{1}^{n} G_{1}\right) \equiv p
$$

Next we suppose $k \in \mathbb{N}$. Here it is given that $P_{1}\left(z_{1}\right)=a_{1, n} z_{1}^{n}+a_{1, n-1} z_{1}^{n-1}+\ldots+$ $a_{1,1} z_{1}+a_{1,0}$. Suppose that

$$
\begin{equation*}
P_{1}\left(z_{1}\right)=\left(z_{1}-a\right)^{m}\left(b_{l_{1}} z_{1}^{l_{1}}+b_{l_{1}-1} z_{1}^{l_{1}-1}+\ldots+b_{1} z_{1}+b_{0}\right), \tag{3.16}
\end{equation*}
$$

where $m+l_{1}=n$ and $a_{1, n}=b_{l_{1}}$. Let $z_{2}=z_{1}-a$. Then (3.16) becomes

$$
\left.\begin{array}{cc}
& P_{1}\left(z_{1}\right)=z_{2}^{m}\left(d_{l_{1}} z_{2}^{l_{1}}+d_{l_{1}-1} z_{2}^{l_{1}-1}+\ldots+d_{1} z_{2}+d_{0}\right), \tag{3.17}\\
\text { i.e., } & P_{1}\left(z_{1}\right)=z_{2}^{m} P_{2}\left(z_{2}\right),
\end{array}\right\}
$$

where $P_{2}\left(z_{2}\right)=d_{l_{1}} z_{2}^{l_{1}}+d_{l_{1}-1} z_{2}^{l_{1}-1}+\ldots+d_{1} z_{2}+d_{0}$. Clearly

$$
\begin{equation*}
P_{1}\left(f_{1}\right)=f_{2}^{m} P_{2}\left(f_{2}\right) \tag{3.18}
\end{equation*}
$$

By the given condition, since P_{1} has at least one zero of multiplicity at least $k+1$ when $k \in \mathbb{N}$, for the sake of simplicity we may assume that $m>k$. Since $P_{1}\left(f_{1}\right)=f_{2}^{m} P_{2}\left(f_{2}\right)$ and $m>k$, from (3.12) we conclude that the zeros of both f_{2} and g_{2} are the zeros of p. As the the number of zeros of p is finite, it follows that f_{2} as well as g_{2} have finitely many zeros. Therefore f_{2} takes the form $f_{2}=h_{0} e^{\alpha}$, where h_{0} is a non-zero polynomial and α is a non-constant polynomial.
Note that $f_{2}^{\prime}=f_{1}^{\prime}=\left(h_{0}^{\prime}+h_{0} \alpha^{\prime}\right) e^{\alpha}$. Therefore $\delta\left(0, f_{1}^{\prime}\right)=1$ and $\delta\left(a, f_{1}\right)=1$. Since $\delta\left(0, f_{1}\right)>0$, then by Lemma 10 we conclude that $a=0$ and so $f_{1}=h_{0} e^{\alpha}$. Also in that case we have $P_{1}\left(f_{1}\right)=f_{1}^{m}\left(b_{l_{1}} f_{1}^{l_{1}}+b_{l_{1}-1} f_{1}^{l_{1}-1}+\ldots+b_{1} f_{1}+b_{0}\right)$.

Now we claim that $b_{i}=0$ for $i=0,1, \ldots, l_{1}-1$. If not, for the sake of simplicity we may assume that $b_{l_{1}}, b_{0} \neq 0$. Let

$$
\begin{aligned}
& \mathcal{H}_{i}(z)=h^{m+i}(z) \prod_{j=1}^{s}\left(h\left(z+c_{j}\right)\right)^{\mu_{j}} \\
\text { and } \quad \xi_{i}(z) & =(m+i) \alpha(z)+\sum_{j=1}^{s} \mu_{j} \alpha\left(z+c_{j}\right),
\end{aligned}
$$

where $i=0,1, \ldots, l_{1}$. Clearly $f_{1}^{m+i}(z) F_{1}(z)=\mathcal{H}_{i}(z) e^{\xi_{i}(z)}$, where $i=0,1, \ldots, l_{1}$. Then by induction we have

$$
\begin{equation*}
\left(b_{i} f_{1}^{m+i} F_{1}\right)^{(k)}=\eta_{i}\left(\xi_{i}^{\prime}, \xi_{i}^{\prime \prime}, \ldots, \xi_{i}^{(k)}, \mathcal{H}_{i}, \mathcal{H}_{i}^{\prime}, \ldots, \mathcal{H}_{i}^{(k)}\right) e^{\xi_{i}} \tag{3.19}
\end{equation*}
$$

where $\eta_{i}\left(\xi_{i}^{\prime}, \xi_{i}^{\prime \prime}, \ldots, \xi_{i}^{(k)}, \mathcal{H}_{i}, \mathcal{H}_{i}^{\prime}, \ldots, \mathcal{H}_{i}^{(k)}\right), i=0,1, \ldots, l_{1}$ are differential polynomials in $\xi_{i}^{\prime}, \xi_{i}^{\prime \prime}, \ldots, \xi_{i}^{(k)}, \mathcal{H}_{i}, \mathcal{H}_{i}^{\prime}, \ldots, \mathcal{H}_{i}^{(k)}$. If possible suppose

$$
\eta_{i}\left(\xi_{i}^{\prime}, \xi_{i}^{\prime \prime}, \ldots, \xi_{i}^{(k)}, \mathcal{H}_{i}, \mathcal{H}_{i}^{\prime}, \ldots, \mathcal{H}_{i}^{(k)}\right) \equiv 0, i=0,1, \ldots, l_{1} .
$$

Then from (3.19), we have $f_{1}^{m+i} F_{1} \equiv p_{1}$, where p_{1} is a polynomial such that $\operatorname{deg}\left(p_{1}\right) \leq k-1$. Therefore $T\left(r, f_{1}^{m+i} F_{1}\right)=O(\log r)$ and so by Lemma 4, we get $T\left(r, f_{1}\right)=O(\log r)+O\left(r^{\rho-1+\varepsilon}\right)$ for all $\varepsilon>0$, which contradicts the fact that f_{1} is a transcendental entire function. Hence $\eta_{i}\left(\xi_{i}^{\prime}, \xi_{i}^{\prime \prime}, \ldots, \xi_{i}^{(k)}, \mathcal{H}_{i}, \mathcal{H}_{i}^{\prime}, \ldots, \mathcal{H}_{i}^{(k)}\right) \not \equiv 0$, $i=0,1, \ldots, l_{1}$. Therefore

$$
\begin{align*}
\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)} & =\left(f_{1}^{m}\left(b_{l_{1}} f_{1}^{l_{1}}+b_{l_{1}-1} f_{1}^{l_{1}-1}+\ldots+b_{1} f_{1}+b_{0}\right) F_{1}\right)^{(k)} \tag{3.20}\\
& =\sum_{i=0}^{l_{1}}\left(b_{i} f_{1}^{m+i} F_{1}\right)^{(k)} \\
& =\sum_{i=0}^{l_{1}} \eta_{i} e^{\xi_{i}} \\
& =\exp \left\{m \alpha(z)+\sum_{j=1}^{s} \alpha\left(z+c_{j}\right)\right\} \times \sum_{i=0}^{l_{1}} \eta_{i}(z) e^{i \alpha(z)} .
\end{align*}
$$

Note that H_{i} and ξ_{i} are polynomials for $i=0,1, \ldots, l_{1}$ and so η_{i} are also polynomials for $i=0,1, \ldots, l_{1}$. Since f_{1} is a transcendental entire function, it follows that $T\left(r, \eta_{i}\right)=S(r, f)$ for $i=0,1, \ldots, l_{1}$. Also from (3.12), we see that $\bar{N}\left(r, 0 ;\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)}\right)=O(\log r)$ and so from (3.20), we have

$$
\begin{equation*}
\bar{N}\left(r, 0 ; \eta_{l_{1}} e^{l_{1} \alpha}+\ldots+\eta_{1} e^{\alpha}+\eta_{0}\right) \leq S\left(r, f_{1}\right) \tag{3.21}
\end{equation*}
$$

Since $\eta_{l_{1}} e^{l_{1} \alpha}+\ldots+\eta_{1} e^{\alpha}$ is a transcendental entire function and η_{0} is a polynomial, it follows that η_{0} is a small function of $\eta_{l_{1}} e^{l_{1} \alpha}+\ldots+\eta_{1} e^{\alpha}$. Now in view of Lemma

1 , (3.21) and using second fundamental theorem for small functions (see [19]), we obtain

$$
\begin{aligned}
l_{1} T\left(r, f_{1}\right)=l_{1} T\left(r, e^{\alpha}\right)= & T\left(r, \eta_{l_{1}} e^{l_{1} \alpha}+\ldots+\eta_{1} e^{\alpha}\right)+S\left(r, f_{1}\right) \\
\leq & \bar{N}\left(r, 0 ; \eta_{l_{1}} e^{l_{1} \alpha}+\ldots+\eta_{1} e^{\alpha}\right) \\
& +\bar{N}\left(r, 0 ; \eta_{l_{1}} e^{l_{1} \alpha}+\ldots+\eta_{1} e^{\alpha}+\eta_{0}\right)+S\left(r, f_{1}\right) \\
\leq & \bar{N}\left(r, 0 ; \eta_{l_{1}} e^{\left(l_{1}-1\right) \alpha}+\ldots+\eta_{1}\right)+S\left(r, f_{1}\right) \\
\leq & \left(l_{1}-1\right) T(r, f)+S\left(r, f_{1}\right),
\end{aligned}
$$

which is a contradiction. Hence $b_{i}=0$ for $i=0,1, \ldots, l_{1}-1$ and so $P_{1}\left(f_{1}\right)=$ $a_{1, n} f_{1}^{n}$. By the given condition, since P_{1} has at least one zero of multiplicity at least $k+1$ when $k \in \mathbb{N}$, it follows that $n \geq k+1$. Therefore (3.12) yields $\left(a_{n} f_{1}^{n} F_{1}\right)^{(k)}\left(a_{n} g_{1}^{n} G_{1}\right)^{(k)} \equiv p^{2}$.
Thus in either cases we have

$$
\begin{equation*}
\left(a_{n} f_{1}^{n} F_{1}\right)^{(k)}\left(a_{n} g_{1}^{n} G_{1}\right)^{(k)} \equiv p^{2}, \tag{3.22}
\end{equation*}
$$

where $\left(a_{n} f_{1}^{n} F_{1}\right)^{(k)}$ and $\left(a_{n} g_{1}^{n} G_{1}\right)^{(k)}$ share $(0, \infty)$. Let z_{q} be a zero of f_{1} of multiplicity q and z_{r} be a zero of g_{1} of multiplicity r. Clearly z_{q} will be a zero of f_{1}^{n} of multiplicity $n q$ and z_{r} will be a zero of g_{1}^{n} of multiplicity $n r$. Since f_{1} and g_{1} are transcendental entire functions, it follows that z_{q} and z_{r} must be the zeros of $\left(a_{n} f_{1}^{n} F_{1}\right)^{(k)}$ and $\left(a_{n} g_{1}^{n} G_{1}\right)^{(k)}$ of multiplicities at least $q_{1}-k(\geq n q-k \geq 1)$ and $r_{1}-k(\geq n r-k \geq 1)$ respectively. Since $\left(a_{n} f_{1}^{n} F_{1}\right)^{(k)}$ and $\left(a_{n} g_{1}^{n} G_{1}\right)^{(k)}$ share $(0, \infty)$, it follows that $z_{p}=z_{q}$. Hence f_{1} and g_{1} share $(0, \infty)$. Consequently F_{1} and G_{1} share $(0, \infty)$ and so $a_{n} f_{1}^{n} F_{1}$ and $a_{n} g_{1}^{n} G_{1}$ share $(0, \infty)$.
We consider the following cases.
Case 1. Suppose 0 is a Picard exceptional value of both f_{1} and g_{1}. Since $f_{1} \neq 0$ and $g_{1} \neq 0$, so we can take

$$
\begin{equation*}
f_{1}(z)=e^{\alpha(z)} \text { and } g_{1}(z)=e^{\beta(z)} \tag{3.23}
\end{equation*}
$$

where α and β are two non-constant entire functions. Since f_{1} and g_{1} are of finite order, both α and β are non-constant polynomials. Let

$$
\begin{equation*}
\alpha_{1}(z)=n \alpha(z)+\sum_{j=1}^{s} \mu_{j} \alpha\left(z+c_{j}\right) \text { and } \beta_{1}(z)=n \beta(z)+\sum_{j=1}^{s} \mu_{j} \beta\left(z+c_{j}\right) . \tag{3.24}
\end{equation*}
$$

We now consider the following sub-cases.
Sub-case 1.1. Let $\operatorname{deg}(p)=l \in \mathbb{N}$. Following sub-cases are immediately.
Sub-case 1.1.1. Let $k=0$. Note that $a_{n} f_{1}^{n} F_{1} \neq 0$ and $a_{n} g_{1}^{n} G_{1} \neq 0$. Since $\operatorname{deg}(p) \geq 1$, from (3.22) we arrive at a contradiction.
Sub-case 1.1.2. Let $k=1$. Then from (3.22), we get

$$
\begin{equation*}
a_{n}^{2} \alpha_{1}^{\prime} \beta_{1}^{\prime} e^{\alpha_{1}+\beta_{1}} \equiv p^{2} \tag{3.25}
\end{equation*}
$$

Also from (3.25), we can conclude that $\alpha_{1}+\beta_{1} \equiv c_{1} \in \mathbb{C}$ and so $\alpha_{1}^{\prime}+\beta_{1}^{\prime} \equiv 0$. Thus from (3.25), we get $a_{n}^{2} e^{c_{1}} \alpha_{1}^{\prime} \beta_{1}^{\prime} \equiv p^{2}$. By computation we get

$$
\begin{equation*}
\alpha_{1}^{\prime}(z)=c p(z) \text { and } \beta_{1}^{\prime}(z)=-c p(z), \text { where } c \in \mathbb{C} \backslash\{0\} . \tag{3.26}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\alpha_{1}(z)=c Q(z)+b_{1} \text { and } \beta_{1}(z)=-c Q(z)+b_{2}, \tag{3.27}
\end{equation*}
$$

where $Q(z)=\int_{0}^{z} p(z) d z$ and $b_{1}, b_{2} \in \mathbb{C}$. Finally we take f and g as

$$
f(z)-c_{0}=e^{\alpha(z)} \text { and } g(z)-c_{0}=e^{\beta(z)}
$$

such that $n \alpha(z)+\sum_{j=1}^{s} \mu_{j} \alpha\left(z+c_{j}\right)=c \int_{0}^{z} p(z) d z+b_{1}, n \beta(z)+\sum_{j=1}^{s} \mu_{j} \beta\left(z+c_{j}\right)=$ $-c \int_{0}^{z} p(z) d z+b_{2}$, where $b_{1}, b_{2} \in \mathbb{C}$ and $c \in \mathbb{C} \backslash\{0\}$ such that $a_{n}^{2} c^{2} e^{b_{1}+b_{2}}=-1$.
Sub-case 1.1.3. Let $k \in \mathbb{N} \backslash\{1\}$. Then from (3.22), we see that $\alpha_{1}+\beta_{1} \in \mathbb{C}$, i.e., $\alpha_{1}^{\prime} \equiv-\beta_{1}^{\prime}$. Therefore $\operatorname{deg}\left(\alpha_{1}\right)=\operatorname{deg}\left(\beta_{1}\right)$. If possible suppose $\operatorname{deg}\left(\alpha_{1}\right)=\operatorname{deg}\left(\beta_{1}\right)=$ 1. Then clearly $\left(a_{n} f_{1}^{n} F_{1}\right)^{(k)} \neq 0$ and $\left(a_{n} g_{1}^{n} G_{1}\right)^{(k)} \neq 0$. Since $\operatorname{deg}(p) \geq 1$, we get a contradiction from (3.22). Hence $\operatorname{deg}\left(\alpha_{1}\right)=\operatorname{deg}\left(\beta_{1}\right) \geq 2$. Now from (3.23) and Lemma 11, we see that

$$
\left(a_{n} f_{1}^{n} F_{1}\right)^{(k)}=\left(n^{k}\left(\alpha_{1}^{\prime}\right)^{k}+\frac{k(k-1)}{2} n^{k-1}\left(\alpha_{1}^{\prime}\right)^{k-2} \alpha_{1}^{\prime \prime}+P_{k-2}\left(\alpha_{1}^{\prime}\right)\right) e^{\alpha_{1}} .
$$

Similarly we have

$$
\begin{aligned}
& \left(a_{n} g_{1}^{n} G_{1}\right)^{(k)} \\
= & \left(n^{k}\left(\beta_{1}^{\prime}\right)^{k}+\frac{k(k-1)}{2} n^{k-1}\left(\beta_{1}^{\prime}\right)^{k-2} \beta_{1}^{\prime \prime}+P_{k-2}\left(\beta_{1}^{\prime}\right)\right) e^{\beta_{1}} \\
= & \left((-1)^{k} n^{k}\left(\alpha_{1}^{\prime}\right)^{k}-\frac{k(k-1)}{2} n^{k-1}(-1)^{k-2}\left(\alpha_{1}^{\prime}\right)^{k-2} \alpha_{1}^{\prime \prime}+P_{k-2}\left(-\alpha_{1}^{\prime}\right)\right) e^{\beta_{1}} .
\end{aligned}
$$

Since $\operatorname{deg}\left(\alpha_{1}\right) \geq 2$, we observe that $\operatorname{deg}\left(\left(\alpha_{1}^{\prime}\right)^{k}\right) \geq k \operatorname{deg}\left(\alpha_{1}^{\prime}\right)$ and so $\left(\alpha_{1}^{\prime}\right)^{k-2} \alpha_{1}^{\prime \prime}$ is either a non-zero constant or $\operatorname{deg}\left(\left(\alpha_{1}^{\prime}\right)^{k-2} \alpha_{1}^{\prime \prime}\right) \geq(k-1) \operatorname{deg}\left(\alpha_{1}^{\prime}\right)-1$. Also we see that

$$
\operatorname{deg}\left(\left(\alpha_{1}^{\prime}\right)^{k}\right)>\operatorname{deg}\left(\left(\alpha_{1}^{\prime}\right)^{k-2} \alpha_{1}^{\prime \prime}\right)>\operatorname{deg}\left(P_{k-2}\left(\alpha_{1}^{\prime}\right)\right)\left(\text { or } \operatorname{deg}\left(P_{k-2}\left(-\alpha_{1}^{\prime}\right)\right)\right)
$$

Let

$$
\alpha_{1}^{\prime}(z)=e_{t} z^{t}+e_{t-1} z^{t-1}+\ldots+e_{0}
$$

where $e_{0}, e_{1}, \ldots, e_{t}(\neq 0) \in \mathbb{C}$. Then we have

$$
\left(\alpha_{1}^{\prime}(z)\right)^{i}=e_{t}^{i} z^{i t}+i e_{t}^{i-1} e_{t-1} z^{i t-1}+\ldots \ldots .
$$

where $i \in \mathbb{N}$. Therefore we have
$\left(a_{n} f_{1}^{n} F_{1}\right)^{(k)}=\left(n^{k} e_{t}^{k} z^{k t}+k n^{k} e_{t}^{k-1} e_{t-1} z^{k t-1}+\ldots+\left(D_{1}+D_{2}\right) z^{k t-t-1}+\ldots\right) e^{\alpha_{1}}$
and

$$
\begin{aligned}
\left(a_{n} g_{1}^{n} G_{1}\right)^{(k)}= & \left((-1)^{k} n^{k} e_{t}^{k} z^{k t}+(-1)^{k} k n^{k} e_{t}^{k-1} e_{t-1} z^{k t-1}+\ldots\right. \\
& \left.+\left((-1)^{k} D_{1}+(-1)^{k-1} D_{2}\right) z^{k t-t-1}+\ldots\right) e^{\beta_{1}}
\end{aligned}
$$

where $D_{1}, D_{2} \in \mathbb{C}$ such that $D_{2}=\frac{k(k-1)}{2} t n^{k-1} e_{t}^{k-1}$. Since $\left(a_{n} f_{1}^{n} F_{1}\right)^{(k)}$ and $\left(a_{n} g_{1}^{n} G_{1}\right)^{(k)}$ share $(0, \infty)$, we have

$$
\begin{align*}
& n^{k} e_{t}^{k} z^{k t}+k n^{k} e_{t}^{k-1} e_{t-1} z^{k t-1}+\ldots+\left(D_{1}+D_{2}\right) z^{k t-t-1}+\ldots \tag{3.28}\\
= & d_{1}^{*}\left((-1)^{k} n^{k} e_{t}^{k} z^{k t}+(-1)^{k} k n^{k} e_{t}^{k-1} e_{t-1} z^{k t-1}+\ldots\right. \\
& \left.+\left((-1)^{k} D_{1}+(-1)^{k-1} D_{2}\right) z^{k t-t-1}+\ldots\right)
\end{align*}
$$

where $d_{1}^{*} \in \mathbb{C} \backslash\{0\}$. From (3.28), we get $D_{2}=0$, i.e., $\frac{k(k-1)}{2} t n^{k-1} e_{t}^{k-1}=0$, which is impossible for $k \geq 2$.
Sub-case 1.2. Let $p(z)=b \in \mathbb{C} \backslash\{0\}$. Since $n>k$, we have $f_{1} \neq 0$ and $g_{1} \neq 0$. In this case also we have $f_{1}(z)=e^{\alpha(z)}$ and $g_{1}(z)=e^{\beta(z)}$, where α and β are non-constant polynomials. We now consider the following two sub-cases.
Sub-case 1.2.1. Let $k=0$. Now from (3.22) and (3.23), we have

$$
a_{n}^{2} \exp \left\{n(\alpha(z)+\beta(z))+\sum_{i=1}^{s} \mu_{j}\left(\alpha\left(z+c_{j}\right)+\beta\left(z+c_{j}\right)\right)\right\} \equiv b .
$$

Therefore we must have $n(\alpha(z)+\beta(z))+\sum_{i=1}^{s} \mu_{j}\left(\alpha\left(z+c_{j}\right)+\beta\left(z+c_{j}\right)\right) \in \mathbb{C}$ and so $\alpha(z)+\beta(z) \in \mathbb{C}$. Finally we can take $f_{1}(z)$ and $g_{1}(z)$ as follows $f(z)-c_{0}=e^{\alpha(z)}$ and $g(z)-c_{0}=t e^{-\alpha(z)}$, where α is a non-constant polynomial and $t \in \mathbb{C} \backslash\{0\}$ such that $a_{n}^{2} t^{n+\sigma}=b^{2}$.
Sub-case 1.2.2. Let $k=1$. Considering Sub-case 1.1.2 one can easily conclude that $\operatorname{deg}\left(\alpha_{1}\right)=\operatorname{deg}\left(\beta_{1}\right)=1$, i.e., $\operatorname{deg}(\alpha)=\operatorname{deg}(\beta)=1$. Finally observing (3.22), we can take $f(z)-c_{0}=c_{1} e^{d_{1} z}$ and $g(z)-c_{0}=c_{2} e^{-d_{1} z}$, where $c_{1}, c_{2}, d_{1} \in \mathbb{C}$ such that $(-1)^{k} a_{n}^{2}\left(c_{1} c_{2}\right)^{n+\sigma}\left(d_{1}(n+\sigma)\right)^{2 k}=b^{2}$.
Sub-case 1.2.3. Let $k \in \mathbb{N} \backslash\{1\}$. Then from (3.22), we see that

$$
\begin{equation*}
\left(a_{n} f_{1}^{n} F_{1}\right)^{(k)} \neq 0 \text { and }\left(a_{n} g_{1}^{n} G_{1}\right)^{(k)} \neq 0 \tag{3.29}
\end{equation*}
$$

Again from (3.22), we see that $\alpha_{1}+\beta_{1} \in \mathbb{C}$, i.e., $\alpha_{1}^{\prime} \equiv-\beta_{1}^{\prime}$. Therefore $\operatorname{deg}\left(\alpha_{1}\right)=$ $\operatorname{deg}\left(\beta_{1}\right)$. Suppose $\operatorname{deg}\left(\alpha_{1}\right)=\operatorname{deg}\left(\beta_{1}\right) \geq 2$. Considering Sub-case 1.1.3 one can easily get

$$
\left(a_{n} f_{1}^{n} F_{1}\right)^{(k)}=\left(n^{k}\left(\alpha_{1}^{\prime}\right)^{k}+\frac{k(k-1)}{2} n^{k-1}\left(\alpha_{1}^{\prime}\right)^{k-2} \alpha_{1}^{\prime \prime}+P_{k-2}\left(\alpha_{1}^{\prime}\right)\right) e^{\alpha_{1}}
$$

and

$$
\begin{aligned}
& \left(a_{n} g_{1}^{n} G_{1}\right)^{(k)} \\
= & \left((-1)^{k} n^{k}\left(\alpha_{1}^{\prime}\right)^{k}-\frac{k(k-1)}{2} n^{k-1}(-1)^{k-2}\left(\alpha_{1}^{\prime}\right)^{k-2} \alpha_{1}^{\prime \prime}+P_{k-2}\left(-\alpha_{1}^{\prime}\right)\right) e^{\beta_{1}},
\end{aligned}
$$

where

$$
\begin{array}{ll}
& n^{k}\left(\alpha_{1}^{\prime}\right)^{k}+\frac{k(k-1)}{2} n^{k-1}\left(\alpha_{1}^{\prime}\right)^{k-2} \alpha_{1}^{\prime \prime}+P_{k-2}\left(\alpha_{1}^{\prime}\right) \\
\text { and } & (-1)^{k} n^{k}\left(\alpha_{1}^{\prime}\right)^{k}-\frac{k(k-1)}{2} n^{k-1}(-1)^{k-2}\left(\alpha_{1}^{\prime}\right)^{k-2} \alpha_{1}^{\prime \prime}+P_{k-2}\left(-\alpha_{1}^{\prime}\right)
\end{array}
$$

are non-constant polynomials. Then from (3.29), we arrive at a contradiction. Hence $\operatorname{deg}\left(\alpha_{1}\right)=\operatorname{deg}\left(\beta_{1}\right)=1$ and so $\operatorname{deg}(\alpha)=\operatorname{deg}(\beta)=1$. Finally observing (3.22), we can take $f(z)-c_{0}=c_{1} e^{d_{1} z}$ and $g(z)-c_{0}=c_{2} e^{-d_{1} z}$, where $c_{1}, c_{2}, d_{1} \in \mathbb{C}$ such that $(-1)^{k} a_{n}^{2}\left(c_{1} c_{2}\right)^{n+\sigma}\left(d_{1}(n+\sigma)\right)^{2 k}=b^{2}$.
Case 2. Suppose 0 is not a Picard exceptional value of f_{1} and g_{1}. Since $n>k$, from (3.22) we see that zeros of both f_{1} and g_{1} are the zeros of p and so f_{1} and g_{1} have finitely many zeros. Consequently both $f_{1}^{n} F_{1}$ and $g_{1}^{n} G_{1}$ have finitely many zeros.
Let $H=f_{1}^{n} F_{1}, \hat{H}=g_{1}^{n} G_{1}, F=\frac{H}{p}$ and $G=\frac{\hat{H}}{p}$. Clearly F and G have finitely many poles. Let $\mathcal{F}=\left\{F_{\omega}\right\}$ and $\mathcal{G}=\left\{G_{\omega}\right\}$, where $F_{\omega}(z)=F(z+\omega)=\frac{H(z+\omega)}{p(z+\omega)}$ and $G_{\omega}(z)=G(z+\omega)=\frac{\hat{H}(z+\omega)}{p(z+\omega)}, z \in \mathbb{C}$. Clearly \mathcal{F} and \mathcal{G} are two families of meromorphic functions defined on \mathbb{C}. We now consider following two sub-cases.
Sub-case 2.1. Suppose that one of the families \mathcal{F} and \mathcal{G}, say \mathcal{F}, is normal on \mathbb{C}. Then by Marty's theorem $F^{\#}(\omega)=F_{\omega}^{\#}(0) \leq M$ for some $M>0$ and for all $\omega \in \mathbb{C}$. Hence by Lemma 9 , we have $F\left(=\frac{f_{1}^{n} F_{1}}{p}\right)$ is of order at most 1 . From Lemma 4, we have $\rho\left(f_{1}^{n} F_{1}\right)=\rho\left(f_{1}\right)$. Now from (3.22), we have

$$
\begin{aligned}
\rho\left(f_{1}\right)=\rho\left(\frac{f_{1}^{n} F_{1}}{p}\right)=\rho\left(f_{1}^{n} F_{1}\right) & =\rho\left(\left(f_{1}^{n} F_{1}\right)^{(k)}\right) \\
& =\rho\left(\left(g_{1}^{n} G_{1}\right)^{(k)}\right)=\rho\left(g_{1}^{n} G_{1}\right)=\rho\left(\frac{g_{1}^{n} G_{1}}{p}\right) \\
& =\rho\left(g_{1}\right) \leq 1 .
\end{aligned}
$$

Since f_{1} and g_{1} are transcendental entire functions having finitely many zeros and are of order at most 1 , we have

$$
\begin{equation*}
f_{1}=h_{1} e^{\alpha} \text { and } g_{1}=h_{1} e^{\beta}, \tag{3.30}
\end{equation*}
$$

where h_{1} is a non-constant polynomial and α, β polynomials of degree 1 . Now from (3.22) and (3.24), we see that $\alpha_{1}+\beta_{1} \in \mathbb{C}$ and so $\alpha_{1}^{\prime}+\beta_{1}^{\prime} \equiv 0$. Since α and β are polynomials of degree 1 , without loss of generality we may assume that $\alpha(z)=a_{1} z+b_{1}$ and $\beta(z)=a_{2} z+b_{2}$, where $a_{1}(\neq 0), b_{1}, a_{2}(\neq 0), b_{2} \in \mathbb{C}$. Then from (3.24), we have $\alpha_{1}^{\prime}(z)=(n+\sigma) a_{1}$ and $\beta_{1}^{\prime}(z)=(n+\sigma) a_{2}$. Since $\beta_{1}^{\prime}(z) \equiv-\alpha_{1}^{\prime}(z)$, it follows that $a_{2}=-a_{1}$ and so $\alpha^{\prime}(z) \equiv-\beta^{\prime}(z)$. Now we consider the following two sub-cases.
Sub-case 2.1.1. Let $k=0$. Now observing (3.22), we can take $f(z)-c_{0}=h(z) e^{a z}$ and $g(z)-c_{0}=t h(z) e^{-a z}$, where h is a non-constant polynomial and $a, t \in \mathbb{C} \backslash\{0\}$ such that $a_{n}^{2} t^{n+\sigma} h^{2 n}(z)\left(\prod_{j=1}^{s} h\left(z+c_{j}\right)\right)^{2} \equiv p^{2}(z)$.
Sub-case 2.1.2. Let $k \in \mathbb{N}$. Suppose $\alpha^{\prime}(z)=a_{1}$. Therefore $\beta^{\prime}(z) \equiv-\alpha^{\prime}(z) \equiv$
$-a_{1}$. Now from (3.24), we have $\alpha_{1}^{\prime}(z)=(n+\sigma) a_{1}$ and $\beta_{1}^{\prime}(z)=-(n+\sigma) a_{1}$. Now from (3.22) and (3.30), we have respectively

$$
\left(f_{1}^{n} F_{1}\right)^{(k)}=e^{\alpha_{1}} \sum_{i=0}^{k}{ }^{k} C_{i}\left(n \alpha_{1}^{\prime}\right)^{k-i}\left(h_{1}^{n}\right)^{(i)}=e^{\alpha_{1}} \sum_{i=0}^{k}{ }^{k} C_{i}\left((n+\sigma) a_{1}\right)^{k-i}\left(h_{1}^{n}\right)^{(i)}
$$

and

$$
\left(g_{1}^{n} G_{1}\right)^{(k)}=e^{\beta_{1}} \sum_{i=0}^{k}{ }^{k} C_{i}\left(\beta_{1}^{\prime}\right)^{k-i}\left(h_{1}^{n}\right)^{(i)}=e^{\beta_{1}} \sum_{i=0}^{k}{ }^{k} C_{i}\left(-(n+\sigma) a_{1}\right)^{k-i}\left(h_{1}^{n}\right)^{(i)},
$$

where we define $\left(h_{1}^{n}\right)^{(0)}=h_{1}^{n}$. Since $\left(f_{1}^{n} F_{1}\right)^{(k)}$ and $\left(g_{1}^{n} G_{1}\right)^{(k)}$ share $(0, \infty)$, it follows that

$$
\begin{equation*}
\sum_{i=0}^{k}{ }^{k} C_{i}\left((n+\sigma) a_{1}\right)^{k-i}\left(h_{1}^{n}\right)^{(i)} \equiv d_{2}^{*} \sum_{i=0}^{k}{ }^{k} C_{i}(-1)^{k-i}\left((n+\sigma) a_{1}\right)^{k-i}\left(h_{1}^{n}\right)^{(i)} \tag{3.31}
\end{equation*}
$$

where $d_{2}^{*} \in \mathbb{C} \backslash\{0\}$. But from (3.31), we arrive at a contradiction.
Sub-case 2.2. Suppose that one of the families \mathcal{F} and \mathcal{G}, say \mathcal{F} is not normal on \mathbb{C}. Then there exists at least one point $z_{0} \in \Delta$ such that \mathcal{F} is not normal at z_{0}. Without loss of generality we may assume that $z_{0}=0$. Now by Marty's theorem there exists a sequence of meromorphic functions $\left\{F\left(z+\omega_{j}\right)\right\} \subset \mathcal{F}$, where $z \in \Delta$ and $\left\{\omega_{j}\right\} \subset \mathbb{C}$ is some sequence of complex numbers such that $F^{\#}\left(\omega_{j}\right) \rightarrow \infty$ as $\left|\omega_{j}\right| \rightarrow \infty$. Since p has only finitely many zeros, so there exists a $r_{1}>0$ such that $p(z) \neq 0$ in $\{z:|z| \geq r\}$. Again since $f_{1}^{n} F_{1}$ has finitely many zeros, so there exists a $r_{2}>0$ such that $f_{1}^{n}(z) F_{1}(z) \neq 0$ in $\left\{z:|z| \geq r_{2}\right\}$. Let $r=\max \left\{r_{1}, r_{2}\right\}$ and $D=\{z:|z| \geq r\}$. Also since $w_{j} \rightarrow \infty$ as $j \rightarrow \infty$, without loss of generality we may assume that $\left|w_{j}\right| \geq r+1$ for all j. Let

$$
F\left(w_{j}+z\right)=\frac{H\left(w_{j}+z\right)}{p\left(w_{j}+z\right)} .
$$

Since $\left|w_{j}+z\right| \geq\left|w_{j}\right|-|z|$, it follows that $w_{j}+z \in D$ for all $z \in \Delta$. Also since $f_{1}^{n}(z) F_{1}(z) \neq 0$ and $p(z) \neq 0$ in D, it follows that $f_{1}^{n}\left(\omega_{j}+z\right) F_{1}\left(\omega_{j}+z\right) \neq 0$ and $p\left(\omega_{j}+z\right) \neq 0$ in Δ for all j. Observing that $F(z)$ is analytic in D, so $F\left(\omega_{j}+z\right)$ is analytic in Δ. Therefore all $F\left(\omega_{j}+z\right)$ are analytic in Δ. Thus we have structured a family $\left\{F\left(\omega_{j}+z\right)\right\}$ of holomorphic functions such that $F\left(\omega_{j}+z\right) \neq 0$ in Δ for all j. Then by Lemma 8 , there exist
(i) points $z_{j} \in \Delta$ such that $\left|z_{j}\right|<1$,
(ii) positive numbers $\rho_{j}, \rho_{j} \rightarrow 0^{+}$,
(iii) a subsequence $\left\{F\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)\right\}$ of $\left\{F\left(\omega_{j}+z\right)\right\}$
such that

$$
\begin{align*}
h_{j}(\zeta) & =\rho_{j}^{-k} F\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right) \rightarrow h(\zeta), \\
\text { i.e., } \quad h_{j}(\zeta) & =\rho_{j}^{-k} \frac{H\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow h(\zeta) \tag{3.32}
\end{align*}
$$

spherically locally uniformly in \mathbb{C}, where $h(\zeta)$ is some non-constant holomorphic function such that $h^{\#}(\zeta) \leq h^{\#}(0)=1$. Now from Lemma 9 , we see that $\rho(h) \leq 1$. In the proof of Zalcman's lemma (see [12, 20]) we see that

$$
\begin{equation*}
\rho_{j}=\frac{1}{F \#\left(b_{j}\right)}, \tag{3.33}
\end{equation*}
$$

where $b_{j}=\omega_{j}+z_{j}$. By Hurwitz's theorem we see that $h(\zeta) \neq 0$. Note that

$$
\begin{equation*}
\frac{p^{\prime}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow 0 \tag{3.34}
\end{equation*}
$$

as $j \rightarrow \infty$. We now prove that

$$
\begin{equation*}
\left(h_{j}(\zeta)\right)^{(k)}=\frac{H^{(k)}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow h^{(k)}(\zeta), \text { where } k \in \mathbb{N} \cup\{0\} \tag{3.35}
\end{equation*}
$$

Clearly (3.35) is true for $k=0$. Therefore we have to show that (3.35) is true for $k \in \mathbb{N}$. Note that from (3.32), we have

$$
\begin{align*}
& \rho_{j}^{-k+1} \frac{H^{\prime}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} \tag{3.36}\\
= & h_{j}^{\prime}(\zeta)+\rho_{j}^{-k+1} \frac{p^{\prime}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p^{2}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} H\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right) \\
= & h_{j}^{\prime}(\zeta)+\rho_{j} \frac{p^{\prime}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} h_{j}(\zeta) .
\end{align*}
$$

Now from (3.32), (3.34) and (3.36), we observe that

$$
\rho_{j}^{-k+1} \frac{H^{\prime}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow h^{\prime}(\zeta)
$$

Suppose

$$
\rho_{j}^{-k+l} \frac{H^{(l)}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow h^{(l)}(\zeta)
$$

Let

$$
G_{j}(\zeta)=\rho_{j}^{-k+l} \frac{H^{(l)}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}
$$

Then $G_{j}(\zeta) \rightarrow h^{(l)}(\zeta)$. Note that

$$
\begin{align*}
& \rho_{j}^{-k+l+1} \frac{H^{(l+1)}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} \tag{3.37}\\
= & G_{j}^{\prime}(\zeta)+\rho_{j}^{-k+l+1} \frac{p^{\prime}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p^{2}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} H^{(l)}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right) \\
= & G_{j}^{\prime}(\zeta)+\rho_{j} \frac{p^{\prime}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} G_{j}(\zeta) .
\end{align*}
$$

So from (3.34) and (3.37), we see that

$$
\begin{aligned}
& \rho_{j}^{-k+l+1} \frac{H^{(l+1)}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow G_{j}^{\prime}(\zeta), \\
& \text { i.e., } \quad \rho_{j}^{-k+l+1} \frac{H^{(l+1)}\left(\omega_{j}+z_{n}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow h_{j}^{(l+1)}(\zeta) .
\end{aligned}
$$

Then by mathematical induction we get desired result (3.35). Let

$$
\begin{equation*}
\left(\hat{h}_{j}(\zeta)\right)^{(k)}=\frac{\hat{H}^{(k)}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} . \tag{3.38}
\end{equation*}
$$

From (3.22), we have

$$
\frac{H^{(k)}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} \frac{\hat{H}^{(k)}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} \equiv 1
$$

and so from (3.35) and (3.38), we get

$$
\begin{equation*}
\left(h_{j}(\zeta)\right)^{(k)}\left(\hat{h}_{j}(\zeta)\right)^{(k)} \equiv 1 \tag{3.39}
\end{equation*}
$$

Suppose $k=0$. Therefore from (3.35) and (3.39), we can deduce that $\hat{h}_{j}(\zeta) \rightarrow$ $\hat{h}(\zeta)$, spherically locally uniformly in \mathbb{C}, where $\hat{h}(\zeta)$ is some non-constant holomorphic function in \mathbb{C}.
Suppose $k \in \mathbb{N}$. Now from (3.35), (3.39) and the formula of higher derivatives we can deduce that $\hat{h}_{j}(\zeta) \rightarrow \hat{h}(\zeta)$, spherically locally uniformly in \mathbb{C}, where $\hat{h}(\zeta)$ is some non-constant holomorphic function in \mathbb{C}. Thus in either cases we can deduce that

$$
\begin{equation*}
\hat{h}_{j}(\zeta) \rightarrow \hat{h}(\zeta), \text { i.e., } \frac{\hat{H}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)}{p\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow \hat{h}(\zeta), \tag{3.40}
\end{equation*}
$$

spherically locally uniformly in \mathbb{C}, where $\hat{h}(\zeta)$ is some non-constant holomorphic function in \mathbb{C}. By Hurwitz's theorem we see that $\hat{h}(\zeta) \neq 0$. Therefore (3.40) can be rewritten as

$$
\begin{equation*}
\left(\hat{h}_{j}(\zeta)\right)^{(k)} \rightarrow(\hat{h}(\zeta))^{(k)} \tag{3.41}
\end{equation*}
$$

spherically locally uniformly in \mathbb{C}. From (3.35), (3.39) and (3.41), we get

$$
\begin{equation*}
(h(\zeta))^{(k)}(\hat{h}(\zeta))^{(k)} \equiv 1 \tag{3.42}
\end{equation*}
$$

Since $\rho(h) \leq 1$, from (3.42), we see that $\rho(h)=\rho\left(h^{(k)}\right)=\rho\left(\hat{h}^{(k)}\right)=\rho(\hat{h}) \leq 1$. Since h and \hat{h} are non-constant entire functions such that $h \neq 0$ and $\hat{h} \neq 0$, so we can take $h=e^{\alpha_{2}}$ and $\hat{h}=e^{\beta_{2}}$, where α_{2} and β_{2} are non-constants entire functions. As $\rho(h) \leq 1$ and $\rho(\hat{h}) \leq 1, \alpha_{2}$ and β_{2} must be polynomials such that $\operatorname{deg}\left(\alpha_{2}\right)=1$ and $\operatorname{deg}\left(\beta_{2}\right)=1$ Therefore we can take

$$
\begin{equation*}
h(z)=\hat{c}_{1} e^{\hat{c} z} \text { and } \hat{h}(z)=\hat{c}_{2} e^{-\hat{c} z} \tag{3.43}
\end{equation*}
$$

where $\hat{c}, \hat{c}_{1}, \hat{c}_{2} \in \mathbb{C} \backslash\{0\}$ such that $(-1)^{k}\left(\hat{c}_{1} \hat{c}_{2}\right)(\hat{c})^{2 k}=1$. Also from (3.43), we have

$$
\begin{equation*}
\frac{h_{j}^{\prime}(\zeta)}{h_{j}(\zeta)}=\rho_{j} \frac{F^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{F\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow \frac{h^{\prime}(\zeta)}{h(\zeta)}=\hat{c}, \tag{3.44}
\end{equation*}
$$

spherically locally uniformly in \mathbb{C}. From (3.33) and (3.44), we get

$$
\begin{aligned}
\rho_{j}\left|\frac{F^{\prime}\left(\omega_{j}+z_{j}\right)}{F\left(\omega_{j}+z_{j}\right)}\right|=\frac{1+\left|F\left(\omega_{j}+z_{j}\right)\right|^{2}}{\left|F^{\prime}\left(\omega_{j}+z_{j}\right)\right|} \frac{\left|F^{\prime}\left(\omega_{j}+z_{j}\right)\right|}{\left|F\left(\omega_{j}+z_{j}\right)\right|} & =\frac{1+\left|F\left(\omega_{j}+z_{j}\right)\right|^{2}}{\left|F\left(\omega_{j}+z_{j}\right)\right|} \\
& \rightarrow\left|\frac{h^{\prime}(0)}{h(0)}\right|=|\hat{c}| .
\end{aligned}
$$

This shows that $\lim _{j \rightarrow \infty} F\left(\omega_{j}+z_{j}\right) \neq 0, \infty$ and so from (3.32) we get

$$
\begin{equation*}
h_{j}(0)=\rho_{j}^{-k} F\left(\omega_{j}+z_{j}\right) \rightarrow \infty . \tag{3.45}
\end{equation*}
$$

Again from (3.32) and (3.43), we have

$$
\begin{equation*}
h_{j}(0) \rightarrow h(0)=\hat{c}_{1} . \tag{3.46}
\end{equation*}
$$

Now from (3.45) and (3.46), we arrive at a contradiction.

4 Proofs of the Theorems

Proof of Theorem 1. Let $F=\frac{\left(P_{1}\left(f_{1}\right) F_{1}\right)^{(k)}}{p}$ and $G=\frac{\left(P_{1}\left(g_{1}\right) G_{1}\right)^{(k)}}{p}$. Then F and G share $(1,2)$ except for the zeros of p. When $H \not \equiv 0$, we follow the proof of Theorem 1.3 [10] while for $H \equiv 0$ we follow Lemmas 6, 7 and 12 . So we omit the detail proof.

Proof of Theorem 2. Let F and G be defined as in Theorem 1. Then F and G share $(1,1)$ except for the zeros of p. When $H \not \equiv 0$, we follow the proof of Theorem 1.4 [10] while for $H \equiv 0$ we follow Lemmas 6,7 and 12 . So we omit the detail proof.

Proof of Theorem 3. Let F and G be defined as in Theorem 1. Then F and G share $(1,0)$ except for the zeros of p. When $H \not \equiv 0$, we follow the proof of Theorem 1.5 [10] while for $H \equiv 0$ we follow Lemmas 6,7 and 12 . So we omit the detail proof.

References

[1] Bergweiler, W. and Eremenko, A., On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoam 11 (1995), 355-373.
[2] Chang, J.M. and Zalcman, L., Meromorphic functions that share a set with their derivatives, J. Math. Anal. Appl. 338 (2008), 1191-1205.
[3] Chiang, Y. M. and Feng, S.J., On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in complex plane, Ramanujan J. 16 (2008), 105-129.
[4] Heittokangas, J., Korhonen, R, Laine, I., Rieppo, J. and Zhang, J.L., Value sharing results for shifts of meromorphic function and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), 352-363.
[5] Hayman, W.K., Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9-42.
[6] Hayman, W.K., Meromorphic functions, The Clarendon Press, Oxford 1964.
[7] Laine, I. and Yang, C.C., Value distribution of difference polynomials, Proc. Japan Acad. Ser. A 83 (2007), 148-151.
[8] Li, W.L. and Li, X.M., Results on uniqueness of entire functions related to difference polynomial, Bull. Malay. Math. Sci. Soc., 39 (2016), 499-515.
[9] Li, X.M., Li, W.I., Yi, H.X. and Wen, Z.T., Uniqueness theorems of entire functions whose difference polynomials share a meromorphic function of smaller order, Ann. Polon. Math. 102 (2011), 111-127.
[10] Majumder, S. and Mandal, R., On the uniqueness of certain type of differential-difference polynomials sharing a polynomial, Adv. Pure Appl. Math. 8 (2017), no. 3, 175-195.
[11] Mues, E., Über ein problem von Hayman, Math. Z. 164 (1979), 239-259.
[12] Pang, X.C., Normality conditions for differential polynomials, Kexue Tongbao 33 (1988), 1690-1693 (in Chinese).
[13] Qi, X.G., Yang, L.Z. and Liu, K., Uniqueness and periodicity of meromorphic functions concerning the difference operator, Comput. Math. Appl. 60 (2010), 1739-1746.
[14] Sahoo, P. and Seikh, S., Value distribution and uniqueness of entire functions related to difference polynomial, Math. Sci. Appl. E-Notes, 4 (2016), no. 2, 46-53.
[15] Schiff, J., Normal families, Berlin, 1993.
[16] Xudan, L. and Lin, W. C., Value sharing results for shifts of meromorphic functions, J. Math Anal. Appl. 377 (2011), 441-449.
[17] Yang, C.C., On deficiencies of differential polynomials II, Math. Z. 125 (1972), 107-112.
[18] Yang, C.C., and Yi, H.X., Uniqueness theory of meromorphic functions, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
[19] Yamanoi, K., The second main theorem for small functions and related problems, Acta Math., 192 (2004) 225-294.
[20] Zalcman, L., A heuristic principle in complex theory, Amer. Math. Monthly, 82 (1975), 813-817.
[21] Zalcman, L., Normal families, new perspectives, Bull. Amer. Math. Soc. 35 (1998), 215-230.
[22] Zhang, Q.C., Meromorphic function that shares one small function with its derivative, J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Art. 116

[^0]: ${ }^{1 *}$ Corresponding author, Department of Mathematics, Raiganj University, Raiganj, West Bengal-733134, India., e-mail: sm05math@gmail.com, sujoy.katwa@gmail.com, smajumder05@yahoo.in
 ${ }^{2}$ Department of Mathematics, Raiganj University, Raiganj, West Bengal-733134, India., email: sarkar.jeet05@gmail.com

