COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASSES OF STARLIKE FUNCTIONS OF COMPLEX ORDER ASSOCIATED WITH A HYPERBOLIC DOMAIN

K. R. KARTHIKEYAN ${ }^{1}$, G. MURUGUSUNDARAMOORTHY ${ }^{2}$, A. NISTOR-ŞERBAN ${ }^{*, 3}$ and D. RADUCANU ${ }^{4}$

Abstract

In this paper, we obtain the coefficient inequalities for functions in certain subclasses of Janowski starlike functions of complex order which are related starlike functions associated with a hyperbolic domain. Our results extend the study of various subclasses of analytic functions. Several applications of our results are also mentioned.

2000 Mathematics Subject Classification: 30C45.
Key words: Janowski starlike functions, conic regions, coefficient inequalities, q-calculus, differential operator.

1 Introduction

Let \mathcal{A} denote the class of functions analytic in $\mathbb{U}=\{z:|z|<1\}$ and having a Taylor series expansion of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \quad c_{n} \geq 0 . \tag{1}
\end{equation*}
$$

Let \mathcal{S} denote the subclass of \mathcal{A} of analytic and univalent functions in \mathcal{U}. Also, let $\mathcal{S}^{*}(\eta)$ and $\mathcal{C}(\eta)$ denote the familiar subclasses of \mathcal{A} consisting of functions which are respectively starlike of order η and convex of order η in \mathbb{U}. The class \mathcal{P} denotes the class of functions of the form $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$ that are analytic

[^0]596 K.R. Karthikeyan, G. Murugusundaramoorthy, A. Nistor-Şerban, D. Răducanu
in \mathbb{U} and such that $\operatorname{Re}(p(z))>0$ for all z in \mathbb{U}. For detailed study of various subclasses of univalent function theory, we refer to [5].

The functions $p_{\alpha}(z)$ plays the role of extremal functions related to the hyperbolic domains (see [14, 21]) and is given by

$$
\begin{equation*}
p_{\alpha}(z)=(1+2 \alpha) \sqrt{\frac{1+b z}{1-b z}}-2 \alpha \tag{2}
\end{equation*}
$$

where

$$
b=b(\alpha)=\frac{1+4 \alpha-4 \alpha^{2}}{(1+2 \alpha)^{2}}, \quad \alpha>0
$$

the branch of the square root \sqrt{w} being chosen such that $R e \sqrt{w} \geq 0$. Clearly, $p_{\alpha}(z) \in \mathcal{P}$ is analytic with the expansion of the form

$$
\begin{equation*}
p_{\alpha}(z)=1+L_{1} z+L_{2} z^{2}+\cdots, \quad\left(L_{j}=p_{j}(\alpha), j=1,2,3, \ldots\right) \tag{3}
\end{equation*}
$$

where

$$
L_{1}=\frac{(1+4 \alpha)}{1+2 \alpha} \quad \text { and } \quad L_{2}=\frac{(1+4 \alpha)\left(1+4 \alpha+8 \alpha^{2}\right)}{2(1+2 \alpha)^{3}}
$$

In [21], Stankiewicz and Wiśniowska defined $S H(\alpha)$ as the class of functions $f \in \mathcal{A}$ satisfying the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-2 \alpha(\sqrt{2}-1)\right|<\sqrt{2} \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)+2 \alpha(\sqrt{2}-1)
$$

for some $\alpha>0$. Note that $f \in S H(\alpha)$ if and only if $\frac{z f^{\prime}(z)}{f(z)}$ lies in the hyperbolic domain

$$
\Omega(\alpha)=\left\{w=u+i v: v^{2}<4 \alpha u+u^{2}, u>0\right\}
$$

which is included in the right half-plane and is symmetric to the real axis with a vertex at the origin. Equivalently, a function $f \in S H(\alpha)$ if and only if

$$
\frac{z f^{\prime}(z)}{f(z)} \prec p_{\alpha}(z)
$$

where \prec denotes the subordination. The function $p_{\alpha}(z)$ maps the unit disk conformally onto the domain $\Omega(\alpha)$ such that $p_{\alpha}(0)=1$ and $p_{\alpha}^{\prime}(0)>0$. The class $S H(\alpha)$ was motivated by the study of uniformly convex and uniformly starlike functions (see $[6,9,10,17]$).

Now we briefly recall the q-calculus and the notations which are required for our study. Quantum calculus (q-calculus and h-calculus) is common classical calculus without the notion of limits. Here, h represents Planckís constant, while q represents quantum. Due to its application in a variety of branches such as physics, mathematics, the area of q-calculus has gained great importance for researchers. The first study on q-calculus was systematically established by Jackson [8] as q-derivative is merely a ratio which is given by

$$
D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z}
$$

Note that $\lim _{q \rightarrow 1^{-}} D_{q} f(z)=f^{\prime}(z)$. Notations and symbols play a very important role in the study of q-calculus. Throughout this paper, we let

$$
[n]_{q}=\sum_{k=1}^{n} q^{k-1}, \quad[0]_{q}=0, \quad(q \in \mathbb{C})
$$

and the q-shifted factorial by

$$
(a ; q)_{n}= \begin{cases}1, & n=0 \\ (1-a)(1-a q) \ldots\left(1-a q^{n-1}\right), & n=1,2, \ldots\end{cases}
$$

In [7], Ismail et. al. introduced the class \mathcal{S}_{q}^{*} to be the class of functions which satisfy the condition

$$
\left|\frac{z D_{q} f(z)}{f(z)}-\frac{1}{1-q}\right| \leq \frac{1}{1-q}, \quad(f \in \mathcal{S})
$$

Equivalently, a function $f \in \mathcal{S}_{q}^{*}$ if and only if the following subordination condition (see [13, 20])

$$
\frac{z D_{q} f(z)}{f(z)} \prec \frac{1+z}{1-q z}
$$

holds. It can easily be seen that if $q \rightarrow 1^{-}, \mathcal{S}_{q}^{*}$ reduces to the well-known class of starlike functions.

Recently in [15], the authors defined the following q-differential operator $\partial_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f: \mathbb{U} \rightarrow \mathbb{U}$ given by

$$
\begin{gather*}
\mathcal{J}_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f=z+\sum_{n=2}^{\infty}\left[1-\lambda+\lambda[n]_{q}\right]^{m} \Gamma_{n} c_{n} z^{n}, \tag{4}\\
\left(m \in N_{0}=N \cup\{0\} \text { and } \lambda \geq 0\right)
\end{gather*}
$$

where

$$
\Gamma_{n}=\frac{\left(a_{1} ; q\right)_{n-1}\left(a_{2} ; q\right)_{n-1} \ldots\left(a_{r} ; q\right)_{n-1}}{(q ; q)_{n-1}\left(b_{1} ; q\right)_{n-1} \ldots\left(b_{s} ; q\right)_{n-1}}, \quad(|q|<1) .
$$

Remark 1. For a detailed study and applications of the operator $\mathcal{J}_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f$, refer to [15] and the references provided therein. We let $\mathscr{D}^{m+1} f$ denote the wellknown Sălăgean derivative operator (see [18]), which is a special case of the operator $J_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f$.

Throughout our present discussion, to avoid repetition, we lay down once and for all that $-1 \leq B<A \leq 1, z \in \mathbb{U}$ and Γ_{n} is real.

Motivated by the class $S H(\alpha)$, we define the following.
Definition 1. For $p_{\alpha}(z)$ defined as in (2), a function $f \in k-S \mathcal{H}_{q, \alpha}^{\lambda, m}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$ if and only if

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z D_{q}\left[\partial_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f\right]}{\mathcal{J}_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f}-1\right) \prec \frac{(A+1) p_{\alpha}(z)-(A-1)}{(B+1) p_{\alpha}(z)-(B-1)}, \quad(f \in \mathcal{A}) \tag{5}
\end{equation*}
$$

where $\gamma \in \mathbb{C} \backslash\{0\}, k \geq 0$ and $0 \leq \alpha<1$.

598 K.R. Karthikeyan, G. Murugusundaramoorthy, A. Nistor-Şerban, D. Răducanu

Remark 2. If we let $A=1, B=-1, \gamma=1+0 i, m=0, r=2, s=1, a_{1}=$ $b_{1}, a_{2}=q$ and $q \rightarrow 1^{-}$, the class $k-\mathcal{S H}_{q, \alpha}^{\lambda, m}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$ reduces to the class $S H(\alpha)$.
Definition 2. Let $\mathcal{S}_{q, \alpha}^{\lambda, m}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$ denote the class of functions $f \in \mathcal{A}$ satisfying the inequality

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z D_{q}\left[\partial_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f\right]}{\mathcal{J}_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f}-1\right) \prec \frac{(A+1) \hat{p}(z)-(A-1)}{(B+1) \hat{p}(z)-(B-1)}, \tag{6}
\end{equation*}
$$

where $\hat{p}(z)=\frac{1+z}{1-q z}, q \in(0,1), \gamma \in \mathbb{C} \backslash\{0\}$.
Remark 3. The study of classes $k-\mathcal{S H}_{q, \alpha}^{\lambda, m}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$ and $\mathcal{S}_{q, \alpha}^{\lambda, m}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$ was motivated by the Noor and Malik [12]. For geometrical interpretation and purpose to study such conic region, refer to [2, 12, 20] and the references provided therein. Several well-known classes (just to name a few) α-spiral functions, convex α-spiral functions, starlike functions of complex order and convex functions of complex order can be obtained as special cases our class $\mathcal{S}_{q, \alpha}^{\lambda, m}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$.

By definition of subordination, a function $f \in \mathcal{A}$ is said to be in $\mathcal{S}_{q, \alpha}^{\lambda, m}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$ if and only if

$$
\begin{gather*}
1+\frac{1}{\gamma}\left(\frac{z D_{q}\left[\partial_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f\right]}{\partial_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f}-1\right)=\frac{(A+1) w(z)+2+(A-1) q w(z)}{(B+1) w(z)+2+(B-1) q w(z)}, \tag{7}\\
(q \in(0,1), z \in \mathbb{U})
\end{gather*}
$$

where $w(z)$ is analytic in \mathbb{U} and $w(0)=0,|w(z)|<1$.

2 Coefficient inequalities

We need the following Lemma to prove our main result in this section.
Lemma 1. [23] Suppose that $\left|(A-B) \gamma(1+q)-\{B(1+q)+(1-q)\}\left([n]_{q}-1\right)\right|-$ $4\left([n]_{q}-1\right)>0$.

$$
\begin{aligned}
& (A-B)^{2}(1+q)^{2}|\gamma|^{2} \\
& +\sum_{n=2}^{j-1}\left\{\left|(A-B) \gamma(1+q)-\{B(1+q)+(1-q)\}\left([n]_{q}-1\right)\right|^{2}-4\left([n]_{q}-1\right)^{2}\right\} \\
& \times \Omega_{n}^{2}\left\{\frac{1}{\Omega_{n}^{2}} \prod_{j=2}^{n} \frac{\left|(A-B)(1+q) \gamma-\left([j-1]_{q}-1\right)[B(1+q)+(1-q)]\right|^{2}}{2\left([j]_{q}-1\right)^{2}}\right\} \\
& =\frac{1}{\left([j-1]_{q}-1\right)!^{2}} \prod_{n=2}^{j} \frac{\left|(A-B)(1+q) \gamma-\left([n-1]_{q}-1\right)[B(1+q)+(1-q)]\right|^{2}}{2}
\end{aligned}
$$

where $q \in(0,1), \gamma \in \mathbb{C} \backslash\{0\}, n \in N \backslash\{0\}$.

Theorem 1. Let the function $f(z)$ defined by (1) be in the class
$\mathcal{S}_{q, \alpha}^{\lambda, m}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$ and let $L_{n}=\left|(A-B) \gamma(1+q)-\{B(1+q)+(1-q)\}\left([n]_{q}-1\right)\right|-$ $4\left([n]_{q}-1\right)$.
(a) If $L_{2} \leq 0$, then

$$
\begin{equation*}
\left|c_{j}\right| \leq \frac{(A-B)(1+q)|\gamma|}{2\left[1-\lambda+[j]_{q} \lambda\right]^{m}\left([j]_{q}-1\right) \Gamma_{j}} . \tag{8}
\end{equation*}
$$

(b) If $L_{n} \geq 0$, then

$$
\begin{align*}
& \left|c_{j}\right| \leq \frac{1}{\left[1-\lambda+[j]_{q} \lambda\right]^{m} \Gamma_{j}} \\
& \times \prod_{n=2}^{j} \frac{\left|(A-B)(1+q) \gamma-\left([n-1]_{q}-1\right)[B(1+q)+(1-q)]\right|}{2\left([n]_{q}-1\right)} \tag{9}
\end{align*}
$$

(c) If $L_{k} \geq 0$ and $L_{k+1} \leq 0$ for $k=2,3, \ldots, j-2$,

$$
\begin{align*}
& \left|c_{j}\right| \leq \frac{1}{\left[1-\lambda+[j]_{q} \lambda\right]^{m}\left([j]_{q}-1\right)\left([k]_{q}-1\right)!\Gamma_{j}} \\
& \quad \times \prod_{n=2}^{k+1} \frac{\left|(A-B)(1+q) \gamma-\left([n-1]_{q}-1\right)[B(1+q)+(1-q)]\right|}{2} \tag{10}
\end{align*}
$$

The bounds in (8) and (9) are sharp for all admissible $A, B, \gamma \in \mathbb{C} \backslash\{0\}$ and for each j.
Proof. Since $f(z) \in \mathcal{S}_{q, \alpha}^{\lambda, m}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$, the inequality (6) gives

$$
\begin{gather*}
2\left[z D_{q}\left[\partial_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f\right]-\partial_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f\right]=\left\{(A-B) \gamma(1+q) \partial_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f\right. \\
\left.+[B(1+q)+(1-q)]\left[\partial_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f-z D_{q}\left(\partial_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f\right)\right]\right\} w(z) . \tag{11}
\end{gather*}
$$

Equation (11) may be written as

$$
\begin{align*}
& \sum_{n=2}^{\infty} 2 \Omega_{n}\left([n]_{q}-1\right) c_{n} z^{n}=\{(A-B) \gamma(1+q) z \\
+ & \left.\sum_{n=2}^{\infty}\left[(A-B) \gamma(1+q)-\{B(1+q)+(1-q)\}\left([n]_{q}-1\right)\right] \Omega_{n} c_{n} z^{n}\right\} w(z), \tag{12}
\end{align*}
$$

where $\Omega_{n}=\left[1-\lambda+\lambda[n]_{q}\right]^{m} \Gamma_{n}$. Equivalently

$$
\begin{align*}
& \sum_{n=2}^{j} 2 \Omega_{n}\left([n]_{q}-1\right) c_{n} z^{n}+\sum_{n=j+1}^{\infty} d_{n} z^{n}=\{(A-B) \gamma(1+q) z \\
& \left.\quad+\sum_{n=2}^{j-1}\left[(A-B) \gamma(1+q)-\{B(1+q)+(1-q)\}\left([n]_{q}-1\right)\right] \Omega_{n} c_{n} z^{n}\right\} w(z) \tag{13}
\end{align*}
$$

600 K.R. Karthikeyan, G. Murugusundaramoorthy, A. Nistor-Şerban, D. Răducanu
for certain coefficients d_{n}. Since $|w(z)|<1$, we have

$$
\begin{align*}
& \left|\sum_{n=2}^{j} 2 \Omega_{n}\left([n]_{q}-1\right) c_{n} z^{n}+\sum_{n=j+1}^{\infty} d_{n} z^{n}\right| \leq \mid(A-B) \gamma(1+q) z \\
& \quad+\sum_{n=2}^{j-1}\left[(A-B) \gamma(1+q)-\{B(1+q)+(1-q)\}\left([n]_{q}-1\right)\right] \Omega_{n} c_{n} z^{n} \mid \tag{14}
\end{align*}
$$

Let $z=r e^{i \theta}, r<1$, applying the Parseval's formula (see [3] p.138) on both sides of the above inequality and after simple computation, we get

$$
\begin{aligned}
& \sum_{n=2}^{j} 4 \Omega_{n}^{2}\left([n]_{q}-1\right)^{2}\left|c_{n}\right|^{2} r^{2 n}+\sum_{n=j+1}^{\infty}\left|d_{n}\right|^{2} r^{2 n} \leq(A-B)^{2}(1+q)^{2}|\gamma|^{2} r^{2} \\
& \quad+\sum_{n=2}^{j-1}\left|(A-B) \gamma(1+q)-\{B(1+q)+(1-q)\}\left([n]_{q}-1\right)\right|^{2} \Omega_{n}^{2}\left|c_{n}\right|^{2} r^{2 n}
\end{aligned}
$$

Let $r \longrightarrow 1^{-}$, then on some simplification we obtain

$$
\begin{array}{r}
4 \Omega_{j}^{2}\left([j]_{q}-1\right)^{2}\left|c_{j}\right|^{2} \leq(A-B)^{2}(1+q)^{2}|\gamma|^{2}+\sum_{n=2}^{j-1}\{\mid(A-B) \gamma(1+q)- \tag{15}\\
\left.\left.\{B(1+q)+(1-q)\}\left([n]_{q}-1\right)\right|^{2}-4\left([n]_{q}-1\right)^{2}\right\} \Omega_{n}^{2}\left|c_{n}\right|^{2} \quad j \geq 2
\end{array}
$$

For $j=2$, it follows from (15) that

$$
\begin{equation*}
\left|c_{2}\right| \leq \frac{(A-B)(1+q)|\gamma|}{2\left[1-\lambda+[2]_{q} \lambda\right]^{m}\left([2]_{q}-1\right) \Gamma_{2}} . \tag{16}
\end{equation*}
$$

Clearly, if $L_{n} \geq 0$ then $L_{n-1} \geq 0$ for $n=2,3, \ldots$. Also, if $L_{n} \leq 0$ the $L_{n+1} \leq 0$ for $n=2,3, \ldots$, . If $\mathrm{E}_{2} \leq 0$, then from the above discussion we can conclude that $\mathrm{L}_{n} \leq 0$ for all $n>2$. It follows from (15) that

$$
\begin{equation*}
\left|c_{j}\right| \leq \frac{(A-B)(1+q)|\gamma|}{2\left[1-\lambda+[j]_{q} \lambda\right]^{m}\left([j]_{q}-1\right) \Gamma_{j}} \tag{17}
\end{equation*}
$$

If $L_{n-1} \geq 0$, then from the above observation $L_{2}, L_{3}, \ldots, L_{j-2} \geq 0$. From (16), we infer that the inequality (9) is true for $j=2$. We establish (9), by mathematical induction. Suppose (9) is valid for $n=2,3, \ldots,(j-1)$. Then it
follows from (15) that

$$
\begin{aligned}
& 4 \Omega_{j}^{2}\left([j]_{q}-1\right)^{2}\left|c_{j}\right|^{2} \leq(A-B)^{2}(1+q)^{2}|\gamma|^{2}+\sum_{n=2}^{j-1}\{\mid(A-B) \gamma(1+q)- \\
& \left.\left.\quad\{B(1+q)+(1-q)\}\left([n]_{q}-1\right)\right|^{2}-4\left([n]_{q}-1\right)^{2}\right\} \Omega_{n}^{2}\left|c_{n}\right|^{2} \\
& \leq(A-B)^{2}(1+q)^{2}|\gamma|^{2} \\
& +\sum_{n=2}^{j-1}\left\{\left|(A-B) \gamma(1+q)-\{B(1+q)+(1-q)\}\left([n]_{q}-1\right)\right|^{2}-4\left([n]_{q}-1\right)^{2}\right\} \\
& \times \Omega_{n}^{2}\left\{\frac{1}{\Omega_{n}^{2}} \prod_{j=2}^{n} \frac{\left|(A-B)(1+q) \gamma-\left([j-1]_{q}-1\right)[B(1+q)+(1-q)]\right|^{2}}{2\left([j]_{q}-1\right)^{2}}\right\}
\end{aligned}
$$

Thus, applying Lemma 1 , we get

$$
\begin{gathered}
\left|c_{j}\right| \leq \frac{1}{\left[1-\lambda+[j]_{q} \lambda\right]^{m} \Gamma_{j}} \\
\times \prod_{n=2}^{j} \frac{\left|(A-B)(1+q) \gamma-\left([n-1]_{q}-1\right)[B(1+q)+(1-q)]\right|}{2\left([n]_{q}-1\right)},
\end{gathered}
$$

which completes the proof of (9).
Now if we assume that $L_{k} \geq 0$ and $L_{k+1} \leq 0$ for $k=2,3, \ldots, j-2$. Then $L_{2}, L_{3}, \ldots, L_{k-1} \geq 0$ and $L_{k+2}, L_{k+3}, \ldots, L_{j-2} \leq 0$. Then (15) gives

$$
\begin{aligned}
& 4 \Omega_{j}^{2}\left([j]_{q}-1\right)^{2}\left|c_{j}\right|^{2} \leq(A-B)^{2}(1+q)^{2}|\gamma|^{2}+\sum_{l=2}^{k}\{\mid(A-B) \gamma(1+q) \\
& \left.-\left.\{B(1+q)+(1-q)\}\left([l]_{q}-1\right)\right|^{2}-4\left([l]_{q}-1\right)^{2}\right\} \Omega_{l}^{2}\left|c_{l}\right|^{2} \\
& +\sum_{l=k+1}^{j-1}\left\{\left[(A-B)(1+q) \gamma-[B(1+q)+(1-q)]\left([l]_{q}-1\right)\right]^{2}\right. \\
& \left.\leq(A-B)^{2}(1+q)^{2}|\gamma|^{2} \quad-4\left([l]_{q}-1\right)^{2}\right\} \Omega_{l}^{2}\left|c_{l}\right|^{2} \\
& +\sum_{l=2}^{k}\left\{\left[(A-B)(1+q) \gamma-[B(1+q)+(1-q)]\left([l]_{q}-1\right)\right]^{2}\right. \\
& \left.-4\left([l]_{q}-1\right)^{2}\right\} \Omega_{l}^{2}\left|c_{l}\right|^{2}
\end{aligned}
$$

On substituting upper estimates for $c_{2}, c_{3}, \ldots, c_{k}$ obtained above and simplifying, we obtain (10).

Also, the bounds in (8) are sharp for the functions $f_{k}(z)$ given by

$$
\partial_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f_{k}(z)= \begin{cases}z(1+B z)^{\frac{(A-B) \gamma}{B \lambda(k-1)}} & \text { if } B \neq 0 \\ z \exp \left(\frac{A \gamma}{\lambda(k-1)} z^{k-1}\right) & \text { if } B=0\end{cases}
$$

602 K.R. Karthikeyan, G. Murugusundaramoorthy, A. Nistor-Şerban, D. Răducanu

The bounds in (9) are sharp for the functions $f(z)$ given by

$$
\mathcal{J}_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f= \begin{cases}z(1+B z)^{\frac{(A-B) \gamma}{B}} & \text { if } B \neq 0 \\ z \exp (A \gamma z) & \text { if } B=0\end{cases}
$$

Remark 4. It can be seen that Theorem 1 extends the results obtained by various authors, for example see [4, 19, 22, 23].

If we let $m=1, r=2, s=1, a_{1}=b_{1}, a_{2}=q$ and $q \rightarrow 1^{-}$, we get the following result obtained by Ghosh and Vasudevarao in [4].

Corollary 1. Let $f \in \mathcal{A}$ satisfy the condition

$$
1+\frac{1}{\gamma}\left(\frac{z\left[\lambda z f^{\prime}(z)+(1-\lambda) f(z)\right]^{\prime}}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right) \prec \frac{1+A z}{1+B z} .
$$

Also, let $L_{n}=|(A-B) \gamma-B(n-1)|-4(n-1)$.
(a) If $L_{2} \leq 0$, then

$$
\left|c_{j}\right| \leq \frac{(A-B)|\gamma|}{[1+\lambda(j-1)](j-1)}
$$

(b) If $L_{n} \geq 0$, then

$$
\left|c_{j}\right| \leq \frac{1}{[1+\lambda(j-1)]} \prod_{n=2}^{j} \frac{|(A-B) \gamma-(n-2) B|}{(n-1)}
$$

(c) If $L_{k} \geq 0$ and $L_{k+1} \leq 0$ for $k=2,3, \ldots, j-2$,

$$
\left|c_{j}\right| \leq \frac{1}{[1+\lambda(j-1)](j-1)(k-1)!} \prod_{n=2}^{k+1}|(A-B) \gamma-(n-2) B|
$$

The bounds in (a) and (b) are sharp for all admissible $A, B, \gamma \in \mathbb{C} \backslash\{0\}$ and for each j.

Corollary 2. [23] Let $f \in \mathcal{A}$, satisfy the subordination condition

$$
(1+i \tan \beta) \frac{z f^{\prime}(z)}{f(z)}-i \tan \beta \prec \frac{1+A z}{1+B z}, \quad(z \in \mathbb{U}) .
$$

Then for $n \geq 2$,

$$
\left|c_{n}\right| \leq \prod_{j=0}^{n-2} \frac{\left|(A-B) e^{-i \beta} \cos \beta-j B\right|}{(j+1)}
$$

where $|\beta|<\pi / 2$.

If we set $A=1-2 \eta(0 \leq \eta<1), B=-1, m=0$ and $q \rightarrow 1^{-}$in Corollary 2, we get the following result.

Corollary 3. [11] Let $f \in \mathcal{A}$ satisfy the condition

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\eta \cos \beta
$$

Then

$$
\begin{equation*}
\left|c_{n}\right| \leq \prod_{j=0}^{n-2}\left(\frac{\left|2(1-\eta) e^{-i \beta} \cos \beta+j\right|}{j+1}\right) \tag{18}
\end{equation*}
$$

The coefficient estimates in (18) are sharp.
If we let $\lambda=1, r=2, s=1, a_{1}=b_{1}$ and $a_{2}=q, A=1, B=-M$ and $q \rightarrow 1^{-}$ in Theorem 1, we have

Corollary 4. [1] Let the function $f(z)$ defined by (1) satisfy the condition

$$
\left|\frac{\gamma-1+\frac{\mathscr{P}^{m+1} f(z)}{\mathscr{D}^{m} f(z)}}{\gamma}-M\right|<M
$$

Let

$$
\begin{aligned}
G= & {\left[\frac{2 u(n-1) \operatorname{Re}(\gamma)}{(n-1)^{2}(1-u)-|\gamma|^{2}(1+u)}\right], } \\
& (\text { for } n=1,3, \ldots, j-1)
\end{aligned}
$$

(a) If $2 u(n-1) \operatorname{Re}\{\gamma\}>(n-1)^{2}(1-u)-|\gamma|^{2}(1+u)$, then, for $j=2,3, \ldots, G+2$

$$
\begin{equation*}
\left|c_{j}\right| \leq \frac{1}{j^{m}(j-1)!} \prod_{n=2}^{j}|(1+u) \gamma+(n-2) u| \tag{19}
\end{equation*}
$$

and for $j>G+2$

$$
\left|c_{j}\right| \leq \frac{1}{j^{m}(j-1)(G+1)!} \prod_{n=2}^{G+3}|(1+u) \gamma+(n-2) u|
$$

(b) If $2 u(n-1) \operatorname{Re}\{\gamma\} \leq(n-1)^{2}(1-u)-|\gamma|^{2}(1+u)$, then

$$
\begin{equation*}
\left|c_{j}\right| \leq \frac{(1+u)|\gamma|}{(j-1) j^{m}} \quad j \geq 2 . \tag{20}
\end{equation*}
$$

where $u=1-\frac{1}{M}\left(M>-\frac{1}{2}\right)$.
The inequalities (19) and (20) are sharp.

604 K.R. Karthikeyan, G. Murugusundaramoorthy, A. Nistor-Şerban, D. Răducanu

To prove our next result, we need the following Lemmas.
Lemma 2. [16] Let $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ be analytic in \mathbb{U} and $g(z)=\sum_{n=1}^{\infty} b_{z} z^{n}$ is analytic and convex in \mathbb{U}. If $f(z) \prec g(z)$, then $\left|a_{n}\right| \leq\left|b_{1}\right|$, for $n=1,2, \ldots$..

Lemma 3. Let the function $p_{\alpha}(z)$ be defined as in (2) and let $p(z)=1+$ $\sum_{n=1}^{\infty} p_{n} z^{n}$ be in \mathcal{P} satisfy the condition

$$
\begin{equation*}
p(z) \prec \frac{(A+1) p_{\alpha}(z)-(A-1)}{(B+1) p_{\alpha}(z)-(B-1)} . \tag{21}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|p_{n}\right| \leq \frac{(A-B)(1+4 \alpha)}{2(1+2 \alpha)}, \quad(n \geq 1) \tag{22}
\end{equation*}
$$

Proof. From (21), we have

$$
\begin{aligned}
p(z) & \prec \frac{A-1}{B-1}\left[1-\frac{A+1}{A-1} p_{\alpha}(z)\right]\left[1+\frac{B+1}{B-1} p_{\alpha}(z)+\left(\frac{B+1}{B-1} p_{\alpha}(z)\right)^{2}+\cdots\right] \\
= & \frac{A-1}{B-1}\left[1+\left(\frac{B+1}{B-1}-\frac{A+1}{A-1}\right) p_{\alpha}(z)\right. \\
& \left.\quad+\left(\frac{(B+1)^{2}}{(B-1)^{2}}-\frac{(A+1)(B+1)}{(A-1)(B-1)}\right)\left[p_{\alpha}(z)\right]^{2}+\cdots\right] .
\end{aligned}
$$

Using $p_{\alpha}(z)=1+L_{1} z+L_{2} z^{2}+L_{3} z^{3}+L_{4} z^{4}+\cdots$ in the above condition and simplifying, we get

$$
p(z) \prec \sum_{n=1}^{\infty} \frac{-2(B+1)^{n-1}}{(B-1)^{n}}+\left[\sum_{n=1}^{\infty} \frac{2 n(A-B)(B+1)^{n-1}}{(B-1)^{n+1}}\right] L_{1} z+\cdots .
$$

The series $\sum_{n=1}^{\infty} \frac{-2(B+1)^{n-1}}{(B-1)^{n}}$ and $\sum_{n=1}^{\infty} \frac{2 n(A-B)(B+1)^{n-1}}{(B-1)^{n+1}}$ converges to 1 and $\frac{(A-B)}{2}$ respectively. Hence

$$
\begin{equation*}
p(z) \prec 1+\frac{(A-B)(1+4 \alpha)}{2(1+2 \alpha)} z+\cdots \tag{23}
\end{equation*}
$$

Since $p(z) \in \mathcal{P}$ and the superordinate function in (23) is convex in \mathbb{U}, the result follows on applying Lemma 2 to (23).

Theorem 2. Let $f \in k-S \mathcal{H}_{q, \alpha}^{\lambda, m}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$, then for $n \geq 2$,
$\left|c_{n}\right| \leq \frac{1}{\left[1-\lambda+\lambda[n]_{q}\right]^{m} \Gamma_{n}}\left(\prod_{j=0}^{n-2} \frac{\left|(A-B)(1+4 \alpha) \gamma-2(1+2 \alpha)\left([j+1]_{q}-1\right) B\right|}{2(1+2 \alpha)\left([j+2]_{q}-1\right)}\right)$.

Proof. By the definition of $k-\delta \mathcal{H}_{q, \alpha}^{\lambda, m}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$, we have

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z D_{q}\left[\partial_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f\right]}{\mathcal{J}_{\lambda}^{m}\left(a_{1}, b_{1} ; q, z\right) f}-1\right)=p(z) \tag{25}
\end{equation*}
$$

where $p(z) \in \mathcal{P}$ and satisfies the subordination condition

$$
p(z) \prec \frac{(A+1) p_{\alpha}(z)-(A-1)}{(B+1) p_{\alpha}(z)-(B-1)} .
$$

Equivalently (25) can be rewritten as

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left[1-\lambda+\lambda[n]_{q}\right]^{m}\left([n]_{q}-1\right) \Gamma_{n} c_{n} z^{n} \\
&=\gamma\left[z+\sum_{n=2}^{\infty}\left[1-\lambda+\lambda[n]_{q}\right]^{m} \Gamma_{n} c_{n} z^{n}\right]\left[\sum_{n=1}^{\infty} p_{n} z^{n}\right]
\end{aligned}
$$

On equating the coefficient of z^{n}, we get

$$
\begin{aligned}
& {\left[1-\lambda+\lambda[n]_{q}\right]^{m}\left([n]_{q}-1\right) \Gamma_{n} c_{n}} \\
& =\gamma\left\{p_{n-1}+p_{n-2}\left[1-\lambda+\lambda[2]_{q}\right]^{m} \Gamma_{2} c_{2}+\cdots+p_{1}\left[1-\lambda+\lambda[n-1]_{q}\right]^{m} \Gamma_{n-1} c_{n-1}\right\} .
\end{aligned}
$$

On computation, we have

$$
\left|c_{n}\right| \leq \frac{|\gamma|}{\left[1-\lambda+\lambda[n]_{q}\right]^{m}\left([n]_{q}-1\right) \Gamma_{n}} \sum_{j=1}^{n-1}\left[1-\lambda+\lambda[n-j]_{q}\right]^{m} \Gamma_{n-j}\left|c_{n-j}\right|\left|p_{j}\right| .
$$

Using (22) in the above inequality, we have (for $c_{1}=1$)

$$
\begin{equation*}
\left|c_{n}\right| \leq \frac{|\gamma|(A-B)(1+4 \alpha)}{2(1+2 \alpha)\left[1-\lambda+\lambda[n]_{q}\right]^{m}\left([n]_{q}-1\right) \Gamma_{n}} \sum_{j=1}^{n-1}\left[1-\lambda+\lambda[n-j]_{q}\right]^{m} \Gamma_{n-j}\left|c_{n-j}\right| . \tag{26}
\end{equation*}
$$

Taking $n=2$, in (26), we get

$$
\left|c_{2}\right| \leq \frac{|\gamma|(A-B)(1+4 \alpha)}{2 q(1+2 \alpha)\left[1-\lambda+\lambda[2]_{q}\right]^{m} \Gamma_{2}}
$$

and for $n=3$ in (26), we get

$$
\begin{aligned}
\left|c_{3}\right| & \leq \frac{|\gamma|(A-B)(1+4 \alpha)}{2 q(1+q)(1+2 \alpha)\left[1-\lambda+\lambda[3]_{q}\right]^{m} \Gamma_{3}}\left(1+\left[1-\lambda+\lambda[2]_{q}\right]^{m} \Gamma_{2}\left|c_{2}\right|\right) \\
& \leq \frac{|\gamma|(A-B)(1+4 \alpha)}{2 q(1+q)(1+2 \alpha)\left[1-\lambda+\lambda[3]_{q}\right]^{m} \Gamma_{3}}\left[1+\frac{|\gamma|(A-B)(1+4 \alpha)}{2 q(1+2 \alpha)}\right]
\end{aligned}
$$

606 K.R. Karthikeyan, G. Murugusundaramoorthy, A. Nistor-Şerban, D. Răducanu

If we let $n=3$, in (24), we have

$$
\begin{aligned}
& \mid c_{3} \leq \frac{1}{\left[1-\lambda+\lambda[3]_{q}\right]^{m} \Gamma_{3}}\left[\frac{|\gamma|(A-B)(1+4 \alpha)}{2 q(1+2 \alpha)}\right. \\
&\left.\quad \times \frac{|(A-B) \gamma(1+4 \alpha)-2(1+2 \alpha)(q) B|}{2(1+2 \alpha) q(1+q)}\right] \\
& \leq \frac{1}{\left[1-\lambda+\lambda[3]_{q}\right]^{m} \Gamma_{3}}\left[\frac{|\gamma|(A-B)(1+4 \alpha)}{2 q(1+2 \alpha)}\right. \\
&\left.\quad \times \frac{(A-B)|\gamma|(1+4 \alpha)+2(1+2 \alpha)(q)|B|}{2(1+2 \alpha) q(1+q)}\right] \\
& \leq \frac{|\gamma|(A-B)(1+4 \alpha)}{2 q(1+q)(1+2 \alpha)\left[1-\lambda+\lambda[3]_{q}\right]^{m} \Gamma_{3}}\left[\frac{|\gamma|(A-B)(1+4 \alpha)}{2 q(1+2 \alpha)}+1\right] .
\end{aligned}
$$

Hence the hypothesis of the theorem is true for $n=3$.
Now let us suppose (24) is valid for $n=2,3, \ldots r$. On using triangle inequality in (24), we get

$$
\begin{aligned}
\left|c_{r}\right| \leq & \frac{1}{\left[1-\lambda+\lambda[r]_{q}\right]^{m}\left([r]_{q}-1\right) \Gamma_{r}} \\
& \times\left(\prod_{j=0}^{r-2} \frac{(A-B)(1+4 \alpha)|\gamma|+2(1+2 \alpha)\left([j+1]_{q}-1\right)}{2(1+2 \alpha)\left([j+2]_{q}-1\right)}\right)
\end{aligned}
$$

By induction hypothesis, we have

$$
\begin{aligned}
& \frac{|\gamma|(A-B)(1+4 \alpha)}{2(1+2 \alpha)\left[1-\lambda+\lambda[r]_{q}\right]^{m}\left([r]_{q}-1\right) \Gamma_{r}} \sum_{j=1}^{r-1}\left[1-\lambda+\lambda[r-j]_{q}\right]^{m} \Gamma_{r-j}\left|c_{r-j}\right| \\
& \leq \frac{1}{\left[1-\lambda+\lambda[r]_{q}\right]^{m} \Gamma_{r}} \prod_{j=0}^{r-2} \frac{(A-B)(1+4 \alpha)|\gamma|+2(1+2 \alpha)\left([j+1]_{q}-1\right)}{2(1+2 \alpha)\left([j+2]_{q}-1\right)}
\end{aligned}
$$

From the above inequality, we have

$$
\begin{aligned}
& \prod_{j=0}^{r-1} \frac{(A-B)(1+4 \alpha)|\gamma|+2(1+2 \alpha)\left([j+1]_{q}-1\right)}{2(1+2 \alpha)\left([j+2]_{q}-1\right)\left[1-\lambda+\lambda[r+1]_{q}\right]^{m} \Gamma_{r+1}} \\
& \geq \frac{|\gamma|(A-B)(1+4 \alpha)}{2(1+2 \alpha)\left([r]_{q}-1\right)} \times \frac{(A-B)(1+4 \alpha)|\gamma|+2(1+2 \alpha)\left([r]_{q}-1\right)}{2(1+2 \alpha)\left([r+1]_{q}-1\right)\left[1-\lambda+\lambda[r+1]_{q}\right]^{m} \Gamma_{r+1}} \\
& \quad \times \sum_{j=1}^{r-1}\left[1-\lambda+\lambda[r-j]_{q}\right]^{m} \Gamma_{r-j}\left|c_{r-j}\right| \\
& = \\
& \quad \frac{|\gamma|(A-B)(1+4 \alpha)}{2(1+2 \alpha)\left[1-\lambda+\lambda[r+1]_{q}\right]^{m}\left([r+1]_{q}-1\right) \Gamma_{r+1}} \\
& \quad\left[\left|c_{r}\right|\left[1-\lambda+\lambda[r]_{q}\right]^{m} \Gamma_{r}+\sum_{j=1}^{r-1}\left[1-\lambda+\lambda[r-j]_{q}\right]^{m} \Gamma_{r-j}\left|c_{r-j}\right|\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{|\gamma|(A-B)(1+4 \alpha)}{2(1+2 \alpha)\left[1-\lambda+\lambda[r+1]_{q}\right]^{m}\left([r+1]_{q}-1\right) \Gamma_{r+1}} \\
& \quad \times \sum_{j=1}^{r}\left[1-\lambda+\lambda[r+1-j]_{q}\right]^{m} \Gamma_{r+1-j}\left|c_{r+1-j}\right|,
\end{aligned}
$$

implies that inequality is true for $n=r+1$. Hence the proof of the Theorem.
If we choose $\gamma=1 /(1+i \tan \beta), \lambda=1, r=2, s=1, a_{1}=b_{1}, a_{2}=q, m=0$ and $q \rightarrow 1^{-}$in Theorem 2, we get the following

Corollary 5. Let $f \in \mathcal{A}$, satisfy the subordination condition

$$
(1+i \tan \beta) \frac{z f^{\prime}(z)}{f(z)}-i \tan \beta \prec \frac{(A+1) p_{\alpha}(z)-(A-1)}{(B+1) p_{\alpha}(z)-(B-1)}, \quad(z \in \mathbb{U})
$$

Then for $n \geq 2$,

$$
\left|c_{n}\right| \leq \prod_{j=0}^{n-2} \frac{\left|(A-B)(1+4 \alpha) e^{-i \beta} \cos \beta-j B\right|}{2(1+2 \alpha)(j+1)}
$$

where $|\beta|<\pi / 2$.
If we choose $\gamma=1+i 0, m=0, r=2, s=1, a_{1}=b_{1}, a_{2}=q$ and $q \rightarrow 1^{-}$in Theorem 2, we get the following, (for an analogous result see [12]).

Corollary 6. For a function $p_{\alpha}(z)$ defined as in (2). Let $f \in \mathcal{A}$ satisfy the condition

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{(A+1) p_{\alpha}(z)-(A-1)}{(B+1) p_{\alpha}(z)-(B-1)}
$$

then

$$
\left|c_{n}\right| \leq \prod_{j=0}^{n-2} \frac{|(A-B)(1+4 \alpha)-2 j B|}{2(1+2 \alpha)(j+1)}
$$

If we choose $m=\lambda=1, r=2, s=1, a_{1}=b_{1}, a_{2}=q$ and $q \rightarrow 1^{-}$in Theorem 2 , we get the following.

Corollary 7. For a function $p_{\alpha}(z)$ defined as in (2). Let $f \in \mathcal{A}$ satisfy the condition

$$
1+\frac{1}{\gamma}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \frac{(A+1) p_{\alpha}(z)-(A-1)}{(B+1) p_{\alpha}(z)-(B-1)}
$$

then

$$
\left|c_{n}\right| \leq \frac{1}{n} \prod_{j=0}^{n-2} \frac{|(A-B)(1+4 \alpha)-2 j B|}{2(1+2 \alpha)(j+1)}
$$

608 K.R. Karthikeyan, G. Murugusundaramoorthy, A. Nistor-Şerban, D. Răducanu

References

[1] Aouf, M.K. Darwish, H.E. and Attiya, A.A. On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math. 32 (2001), no. 10, 1443-1452.
[2] Arif, M., Wang, Z.-G., Khan, R. Lee, S. K., Coefficient inequalities for Janowski-Sakaguchi type functions associated with conic regions, Hacet. J. Math. Stat. 47 (2018), no. 2, 261-271.
[3] Duren, P.L., Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
[4] Ghosh, N. and Vasudevarao, A., Coefficient estimates for certain subclass of analytic functions defined by subordination, Filomat 31 (2017), no.11, 33073318.
[5] Goodman, A.W., Univalent functions Vol. I Mariner, Tampa, FL, 1983.
[6] Goodman, A.W., On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92.
[7] Ismail, M.E.H., Merkes, E. and Styer, D. A generalization of starlike functions, Complex variables theory appl. 14 (1990), no. 1-4, 77-84.
[8] Jackson, F.H., On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46 (1908), 253-281.
[9] Kanas, S. and Wisniowska, A., Conic regions and s-uniform convexity, J. Comput. Appl. Math. 105 (1999), no. 1-2, 327-336.
[10] Kanas and A. Wiśniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), no. 4, (2001), 647-657.
[11] Libera, R.J., Univalent α-spiral functions, Canadian J. Math. 19 (1967), 449-456.
[12] Noor, K.I. and Malik, S.N., On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl. 62 (2011), no. 5, 2209-2217.
[13] Özkan Uçar, H.E., Coefficient inequality for q-starlike functions, Appl. Math. Comput. 276 (2016), 122-126.
[14] Răducanu, D., Analytic functions related with the hyperbola, Chin. Ann. Math. Ser. B 34 (2013), no. 4, 515-528.
[15] Reddy, K.A., Karthikeyan, K.R. and Murugusundaramoorthy, G., Inequalities for the Taylor coefficients of spiralike functions involving q-differential operator, Eur. J. Pure Appl. Math. 12 (2019), no. 3, 846-856.
[16] Rogosinski, W. On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48-82.
[17] Rønning, F. Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196.
[18] Sălăgean, G.Ş., Subclasses of univalent functions, in Complex analysis-fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin.
[19] Selvaraj, C. and Karthikeyan, K.R., Certain classes of analytic functions of complex order involving a family of generalized differential operators, J. Math. Inequal. 2 (2008), no. 4, 449-458.
[20] Srivastava, H.M., Khan, B. Khan, N. and Zhoor, Q. Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J. 48 (2019), no. 2, 407-425.
[21] Stankiewicz, J. and Wiśniowska, A., Starlike functions associated with some hyperbola, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19 (1996), 117-126.
[22] Xu, Q.-H. Cai, Q.-M. and Srivastava, H.M., Sharp coefficient estimates for certain subclasses of starlike functions of complex order, Appl. Math. Comput. 225 (2013), 43-49.
[23] Xu, Q.-H., Lv, C.-B., Luo, N.-C., Srivastava, H.M., Sharp coefficient estimates for a certain general class of spirallike functions by means of differential subordination, Filomat 27 (2013), no. 7, 1351-1356.

610 K.R. Karthikeyan, G. Murugusundaramoorthy, A. Nistor-Şerban, D. Răducanu

[^0]: ${ }^{1}$ Department of Mathematics and Statistics, College of Engineering, National University of Science and Technology, Muscat, Sultanate of Oman, e-mail: kr_karthikeyan1979@yahoo.com
 ${ }^{2}$ Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Deemed to be University, Vellore, Tamilnadu,India, e-mail: gmsmoorthy@yahoo.com
 ${ }^{3 *}$ Corresponding author, Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: andreea.tudor@unitbv.ro
 ${ }^{4}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: draducanu@unitbv.ro

