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NUMERICAL STUDY OF THE MOTION OF A HEAVY BALL
SLIDING ON A ROTATING WIRE
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Abstract

The motion of a heavy ball slipping on a revolving wire was considered in
this study. The importance of the system studied here arises from the fact
that the motional energy in this situation a function of both the dynami-
cal variable and its derivative. Our first step was constructing the classical
Lagrangain. After that the Euler- Lagrange equation is derived. Finally,
we solve the obtained Euler- Lagrange equation analytically and numerically
using the ode45 code which is based on Runge-Kutta method.
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1 Introduction

Differential equations (DEs) play an important role in many branches of
physics such as: classical mechanics [10, 14, 6], electromagnetic theory [8], quan-
tum mechanics [9], fluid mechanics [4], etc. In classical mechanics, we deal with
ordinary differential equation (ODEs) either when using Newtonian mechanics,
or when applying Lagrangian mechanics in studying many physical systems. The
Lagrangian mechanics enables us to solve a variety of physical examples due to
the fact that writing the Lagrangian depends only on scalar quantities (kinetic
energy and potential energy). One can refer to some classical texts to show how
Lagrangian can be built [10, 14, 6]. As a result of building the Lagrange equation
of any system a DEs (called Euler- Lagrange equations) are obtained, and these
equations have to be solved analytically or in some cases due to difficulties we
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seek numerical solutions [7]. Many numerical methods and techniques have been
considered in solving DEs[16, 15, 2, 5]. Techniques and methods used in numeri-
cal are powerful because they help scientists in solving many kinds of differential
equations without seeking for their analytical solutions. The rest of this paper is
organized as follow. In Sec. 2 a physical description for the system is listed where
Euler- Lagrange equation has been obtained. In Sec. 3, numerical method, and
simulation results with discussion are presented. In section 4 we close the present
work by a conclusion.

2 Description of the physical system

Consider a heavy ball slipping on a rotating wire, with angular frequency ω, as
discussed in a well-known text in analytical mechanics [10]. The present system
deals with a ball slipping without resistance on a thin wire revolving about a
vertical axis by a mechanical external agent at a constant angular frequency ω
as shown in Fig. 1 below. The wire deviated away from the vertical axis by an
angle ψ . The ball is forced to move on the wire, and to define its motion we
need just one variable which is r (i.e., the distance from origin). It is important
to mentioned that the importance of this example comes from the fact that the
kinetic energy in this case depends on both the dynamical variable and on its
derivative, instead of on the time derivative alone.

The kinetic energy and the potential energy of the ball respectively read:

Figure 1: Heavy ball sliding on a rotating wire

T =
1

2
m

(
ṙ2 + r2ω2 sin2 ψ

)
(1)

V = mgr cosψ (2)
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As a result, the classical Lagrangian takes the form

L = T − V =
1

2
m

(
ṙ2 + r2ω2 sin2 ψ

)
−mgr cosψ (3)

The classical Euler-Lagrange equation (CELE) can be derived using

∂L

∂r
− d

dt

∂L

∂ṙ
= 0 (4)

In view of Eqs. (4)- (5), the CELE reads:

r̈ = rω2 sin2 ψ − g cosψ (5)

The last equation obtained is a non- homogenous second order linear differential
equation. We aim to solve this equation in the next section numerically for some
given initial conditions.

3 Analytic solution of the problem

In this section we obtained the analytical solution for the motion of equation
(5), the canonical system of Hamilton and Poisson parenthesis are deduced, the
reader can refer to [17, 1, 12] for more details. Let us consider the differential
equation of second degree non-homogeneous:

r̈ − rω2 sin2 ψ = −g cosψ (6)

The characteristic equations for the homogeneous differential equation of second
degree is:

λ2 − ω2 sin2 ψ = 0 (7)

having the real roots: λ1,2 = ±ω sinψ Therefore the homogeneous solution is:

ro = C1e
ω sinψ·t + C2e

−ω sinψ·t (8)

Because the right term from the differential equation (6) is constant then the
particular solution for (6) is

rp =
g

ω2

cosψ

sin2 ψ
(9)

In conclusion the general solution of (6) is:

r = ro + rp = C1e
ω sinψ·t + C2e

−ω sinψ·t +
g

ω2

cosψ

sin2 ψ
(10)

Taking into consideration the initial conditions r(0) = 5 and ṙ(0) = 0 we obtain
that C1 = C2 = 5

2 −
g

2ω2
cosψ
sin2 ψ

and the solution of (6) will be

r(t) =

(
5

2
− g

2ω2

cosψ

sin2 ψ

)(
eω sinψ·t + e−ω sinψ·t

)
+

g

ω2

cosψ

sin2 ψ
(11)
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Next we want to deduce the canonical system of Hamilton in order to obtain the
Poisson parenthesis.

We note by p = ∂L
∂ṙ where p = p(t, r, ṙ) is the generalized impulse. Let intro-

duce the Hamilton function:

H = pṙ − L⇔ H = pṙ − 1

2
m

(
ṙ2 + r2ω2 sin2 ψ

)
+mgr cosψ (12)

The Hamilton system will be:{
ṙ = ∂H

∂p

ṗ = −∂H
∂r = mrω2 sin2 ψ −mg cosψ

(13)

Based on the above system we may obtain the Poisson parenthesis. The symmetric
system attached to the Hamilton system is:

dr
∂H
∂p

=
dp

−∂H
∂r

(14)

Left F (t, r, p) = C be a prime integral of the symmetric system (14) such that
dF
dt = 0. In this case we obtain the following equation:

∂F

∂t
+
∂F

∂r
ṙ +

∂F

∂p
ṗ = 0 (15)

Taking into account the Hamilton system we have:

∂F

∂t
+ (F,H) = 0 (16)

where

(F,H) =
∂F

∂r

∂H

∂p
− ∂F

∂p

∂H

∂r
(17)

is the Poisson parenthesis.

4 Numerical Method and Simulation Results

4.1 Numerical Method

The dsolve command can be used to solve ordinary differential equations
(ODE), such as first-order ODEs and high-order ODEs via MATLAB framework.

A first-order ODE is an relation that has the derivative of the dependent
variable and it requires one initial condition [11, 7] If y is a variable that depends
on t, then the relation between them can be written as [3].

dy

dt
= f(t, y) (18)

In order to obtain a particular solution of a first-order ODE, the dsolve
method is used:

dsolve\left(’eq’,’cond1’,’var’\right) (19)
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The general solution for a second- order ODE takes the form:

d2y

dt2
= f(t, y,

dy

dt
) (20)

Note that here we requires two initial conditions [11, 7]. Again to obtain a
particular solution of a second-order ODE, the dsolve command takes the form:

dsolve\left(’eq’,’cond1’,’cond2’,...,’var’\right) (21)

General and particular solutions are achieved by dsolve method. In a partic-
ular solution, the constants are taken to have definite algebraic values such that
the solution meets certain boundary [7]. Let y a function depending on a variable
t , then the first derivative of y is written as:

Dy =
dy

dt
(22)

where Di stands for the i-th derivatives. As an example, the equation dy
dt +

ay = b takes the following form in MATLAB ’Dy+a*y=b’ , where a and b are

constants. On the other hand, the equation d2y
dt2

+ adydt + by = sin(t) is written in
MATLAB as ’D2y+a*Dy+b*y=sin(t)’ , again with a and b constants [3].

4.2 Simulation results and discussion

In this subsection, we propose the numerical solution for Eq. (5) using diff(s,n),
dsolve\left(’eq’,’cond1’,’var’\right) , and loop structure. We con-
sider some initial conditions, and the numerical solutions for these particular
conditions have been obtained, and one has to note that in all figures obtained x1
refers for r .

Here we consider the following initial condition r(0) = 5 , and ṙ(0) = 0 for the
following three different angles ψ = π

6 , π
4 , and π

2 , and for the following three
different angular speeds ω = 1, 2 , and 3 . The obtained results that are shown
in Fig. (2).
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(a) (b)

(c)

Figure 2: (a)The behaviour of the distance against time for ψ = π
6 and ω = 1, 2

and 3; (b)The behaviour of the distance against time for ψ = π
4 and ω = 1, 2 and

3; (c) The behaviour of the distance against time for ψ = π
2 and ω = 1, 2 and 3;

In Fig. 2 shown above the behaviour of the distance against time is presented
for different angular speed ω = 1, 2, 3 where in each case we consider a specific
angle, for example in Fig. (2a) ψ = π

6 , while ψ = π
4 in Fig. (2b), and finally, we

consider ψ = π
2 in Fig. (2c). On the other hand, in Fig. 3 below we show the

behavior of the distance against time for different angles ψ = π
6 ,

π
4 ,

π
2 where in

each case we consider a specific angular speed ω = 1 for Fig. (3a), ω = 2 for Fig.
(3b), and in Fig. (3c) ω = 3 .

In all figures obtained above it is clear that the distance r(t) = x1(t) increases
in all considered cases for the special case when ψ = π

2 . This is due to the fact
that in this case the wire rotates about the vertical axis in a horizontal plane, so
the particle will move away from the origin (the right direction is considered to be
positive). While for other chosen angles sometimes the heavy bead moves away
from origin and sometimes moving towards the origin depending on the value of
the angular speed ω at which the wire is rotating.
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(a) (b)

(c)

Figure 3: (a)The behaviour of the distance against time for ω = 1 and ψ = π
6 ,

π
4 ,

π
2 ;

(b)The behaviour of the distance against time for ω = 2 and ψ = π
6 ,

π
4 ,

π
2 ; (c) The

behaviour of the distance against time for ω = 3 and ψ = π
6 ,

π
4 ,

π
2 ;

5 Conclusion

In this paper the ode45 code has been successfully applied to find a truthful
numerical solution for the motion of a ball sliding on a rotating wire. The position
of the bead is depicted for the time period [0, 1]. We examine the motion for
different values of angle ψ and for different values of angular speed ω .

It is clear from the figures that when the angle ψ = π
2 the heavy ball moves

away from the origin (to the right) in all considered cases because in this case
the wire rotates on a horizontal plane, while for other consider angles the motion
depends on the angular speed ω considered.

Furthermore, we believe that this method is effective for predicting analytical
solutions in many branches of science and engineering problems.

References

[1] Arnol’d, V.I., mathematical methods of classical mechanics, Springer, 1989.



40 Jihad Asad, Olivia Florea and Hadi Khalilia

[2] Atkinson, K., Han W. and Stewart, D. Numerical solution of ordinary dif-
ferential equations, A John Wiley and sons, Inc., Publication, 2008.

[3] Attaway, S., Matlab: a practical introduction to programming and problem
solving, College of Engineering, Boston University, 2009.

[4] Bansal, R.K., Fluid mechanics, Laxmi Publications, 2017.

[5] Butcher, J.C., 2008. Numerical methods for ordinary differential equations,
2nd edition, John Wiley & sons Ltd, 2008.

[6] Fowles, G.R. and Cassiday, G.L., Analytical mechanics, 7th edn. Thomson
Brooks/Cole, 2005.

[7] Gilat, A., Matlab an introduction with applications, fourth edition, Ohio Uni-
versity, 2011.

[8] Griffiths, D.J. Introduction to electrodynamics, Upper Saddle River, N.J.,
Prentice Hall, 1999.

[9] Griffiths, D.J. Introduction to quantum mechanics, Upper Saddle River, N.J.
Prentice Hall, 2005.

[10] Hand, L.N. and Finch, J.D. Analytical mechanics, Cambridge University
Press, 1998.

[11] Houcque, D. and Robert, R., Applications of MATLAB: ordinary difierential
equations, McCormick School of Engineering and Applied Science - North-
western University, 2007.
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