Bulletin of the *Transilvania* University of Braşov • Vol 13(62), No. 1 - 2020 Series III: Mathematics, Informatics, Physics, 261-272 https://doi.org/10.31926/but.mif.2020.13.62.1.20

CERTAIN SUBCLASS OF POLYLOGARITHM FUNCTIONS DEFINED BY A GENERALIZED DIFFERENTIAL OPERATOR

N. RANI¹, P. Thirupathi REDDY ² and B. VENKATESWARLU^{*,3}

Abstract

In this paper, we define a new subclass of polylogarithm functions and obtained coefficient estimates, growth and distortion theorems, extreme points, radii of starlikeness, convexity and close to convexity for the class $TS_{\lambda}^{m}(\gamma, \alpha, k, \beta)$. Furthermore, we obtained the Fekete-Szego problem for the class also.

2000 Mathematics Subject Classification: 30C45.

Key words: polylogarithm function, coefficient estimates, extreme points, radius of starlikeness.

1 Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

which are analytic and univalent in the open disc $U = \{z \in \mathbb{C} : |z| < 1\}$. A function f in the class of A is said to be in the class $S^*(\beta)$ of starlike functions of order β in E, if it satisfy the inequality

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \beta, \ (z \in E, \ 0 \le \beta < 1).$$

$$\tag{2}$$

¹Department of Mathematics, *PRIME College*, Modavalasa - 534 002, Visakhapatnam, A. P., India, e-mail: raninekkanti1111@gmail.com

²Department of Mathematics, *Kakatiya University*, Warangal- 506 009, Telangana, India, e-mail: reddypt2@gmail.com

^{3*} Corresponding author, Department of Mathematics, GITAM University, Doddaballapur-562 163, Bengaluru North, India, e-mail: bvlmaths@gmail.com

Note that $S^*(0) = S^*$ is the class of starlike functions. Denote by T the subclass of A consisting of functions f of the form

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \ (a_n \ge 0).$$
 (3)

This subclass was introduced and studied by Silverman [12]. For function $f \in A$ given by (1) and $g(z) \in A$ given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n,$$

we define the Hadmard product (or convolution) of f and g by

$$(f*g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n, \ z \in E.$$
(4)

Let $f \in A$. Denote by $\mathfrak{D}^{\lambda} : A \to A$ the operator defined by

$$\mathfrak{D}^{\lambda} = \frac{z}{(1-z)^{\lambda+1}} * f(z) \ (\lambda > -1).$$

It is obivious that $\mathfrak{D}^0 f(z) = f(z), \ \mathfrak{D}^1 f(z) = z f'(z)$ and

$$\mathfrak{D}^{\lambda}f(z) = \frac{z(z^{\lambda-1}f(z))}{\lambda}, \ (\lambda \in N_0 = N \cup 0).$$

Note that
$$\mathfrak{D}^{\lambda}f(z) = z + \sum_{n=2}^{\infty} c(n,\lambda)a_n z^n$$

where $c(n,\lambda) = \begin{pmatrix} n+\lambda-1\\ \lambda \end{pmatrix}$ and $\lambda \in N_0$.

The operator $\mathfrak{D}^{\lambda} f$ is called the Ruscheweyh derivative operator [10]. We recall here the definition of well known generalization of the polylogarithm function G(m, z) given by

$$G(m,z) = \sum_{n=1}^{\infty} \frac{z^n}{n^m}, \ (m \in \mathbb{C}, z \in E).$$
(5)

We note that $G(-1,z) = \frac{z}{(1-z)^2}$ is Koebe function.

For more about polylogarithms in the theory of univalent functions see [1, 7, 8] and [13].

We now introduce a function $(G(m, z))^{-1}$ given by

$$G(m,z) * (G(m,z))^{-1} = \frac{z}{(1-z)^{\lambda+1}}, \ \lambda > -1, m \in \mathbb{C}$$
(6)

and obtain the following linear operator

$$\mathfrak{D}^{\lambda} f(z) = (G(m, z))^{-1} * f(z).$$
(7)

Now we find the explicit form of the function $(G(m, z))^{-1}$, it is well known that $\lambda > -1$.

$$\frac{z}{(1-z)^{\lambda+1}} = \sum_{n=0}^{\infty} \frac{(\lambda+n)}{n!} z^{n+1}, \ (z \in E).$$
(8)

Putting (6) and (8) in (7), we get

$$\sum_{n=1}^{\infty} \frac{z^n}{n^m} * (G(m, z))^{-1} = \sum_{n=1}^{\infty} \frac{(n + \lambda - 1)}{\lambda(n - 1)} z^n.$$

Therefore the function $(G(m, z))^{-1}$ has the following form

$$(G(m,z))^{-1} = \sum_{n=1}^{\infty} \frac{(n+\lambda-1)!}{\lambda!(n-1)!} z^n, \ (z \in \mathbb{C}).$$

For $m, \lambda \in N_0$, we note that

$$\mathfrak{D}_{\lambda}^{m}f(z) = z + \sum_{n=2}^{\infty} n^{m} \frac{(n+\lambda-1)!}{\lambda!(n-1)!} a_{n} z^{n}, \ (z \in \mathbb{C}).$$

$$\tag{9}$$

Note that $\mathfrak{D}_0^m \cong \mathfrak{D}^m$ and $\mathfrak{D}_{\lambda}^0 \cong \mathfrak{D}^{\lambda}$ which were Salagean [11] and Ruschewey [10] derivative operators respectively. It is clear that the operator \mathfrak{D}_{λ}^m included two known derivative operators. Also note that $\mathfrak{D}_0^0 f(z) = f(z)$ and $\mathfrak{D}_0^1 f(z) = \mathfrak{D}_1^0 f(z) = z f'(z)$. If $f \in T$ is given by (3) then we have

$$\mathfrak{D}_{\lambda}^{m}f(z) = z - \sum_{n=2}^{\infty} n^{m} \frac{(n+\lambda-1)!}{\lambda!(n-1)!} a_{n} z^{n}, \ (z \in \mathbb{C})$$
$$= z + \sum_{n=2}^{\infty} n^{m} c(n,\lambda) a_{n} z^{n}$$
(10)
where $c(n,\lambda) = \binom{n+\lambda-1}{\lambda}.$

Using the differential operator (9), we define the following a new subclass of the class A.

Definition 1. For $0 \le \gamma \le 1$, $\alpha \ge 1, k \ge 0$ and $0 \le \beta < 1$, a function $f \in A$ is said to be in the class $S^m_{\lambda}(\gamma, \alpha, k, \beta)$ if it satisfy the condition

$$\mathbb{R}\left\{\alpha \frac{zG'(z)}{G(z)} - (\alpha - 1)\right\} > k \left|\alpha \frac{zG'(z)}{G(z)} - \alpha\right| + \beta,$$
(11)

where

$$G(z) = (1 - \gamma)\mathfrak{D}_{\lambda}^{m} f(z) + \gamma z (\mathfrak{D}_{\lambda}^{m} f(z))'.$$
(12)

We also define $TS^m_{\lambda}(\gamma, \alpha, k, \beta) = S^m_{\lambda}(\gamma, \alpha, k, \beta) \cap T.$

By suitably specializing the parameters involved, the class $S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ and if it satisfy the condition $TS_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ can be reduced to new or to known much simpler classes of functions which were studied in earlier works (see [2, 3, 4, 5, 9]). The object of this paper is to study various properties for functions belonging to the class $S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ and $TS_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ respectively.

2 Coefficient estimates

In order to prove our results from this section we need the following lemma.

Lemma 1. Let β be a real number and w be a complex number. Then $\mathbb{R}(w) \geq \beta$ if and only if

$$|w + (1 - \beta)| - |w - (1 + \beta)| \ge 0.$$

First we give a sufficient coefficient bound for functions in the class $S^m_{\lambda}(\gamma, \alpha, k, \beta)$.

Theorem 1. Let $f \in A$ given by (1). If

$$\sum_{n=2}^{\infty} [1-\beta + \alpha(n-1)(1+k)] A_n(\lambda,\gamma,m)|a_n| \le 1-\beta$$
(13)

where

$$A_n(\lambda, \gamma, m) = [1 + \gamma(m-1)] n^m c(n, \lambda).$$
(14)

Then $f \in S^m_{\lambda}(\gamma, \alpha, k, \beta)$.

Proof. In virtue of Definition 1 and Lemma 1, it is sufficient to show that

$$\left| \alpha \frac{zG'(z)}{G(z)} - (\alpha - 1) - k \right| \alpha \frac{zG'(z)}{G(z)} - \alpha |-(1 + \beta)| \\ \leq \left| \alpha \frac{zG'(z)}{G(z)} - (\alpha - 1) - k \right| \alpha \frac{zG'(z)}{G(z)} - \alpha |+(1 + \beta)|.$$
(15)

For the right hand and left hand side of (15) we may respectively, write

$$R = \left| \alpha \frac{zG'(z)}{G(z)} - (\alpha - 1) - k \right| \alpha \frac{zG'(z)}{G(z)} - \alpha | + (1 - \beta)|$$

$$= \frac{1}{|G(z)|} \left| \alpha zG'(z) - (\alpha - 1)G(z) - ke^{i\theta} \right| \alpha zG'(z) - \alpha G(z)| + (1 - \beta)G(z)|$$

$$> \frac{|z|}{|G(z)|} \left[2 - \beta - \sum_{n=2}^{\infty} 2 - \beta + \alpha(n - 1)(k + 1) \right] A_n(\lambda, \gamma, m) |a_n|$$

and similarly

$$L = \left| \alpha \frac{zG'(z)}{G(z)} - (\alpha - 1) - k \right| \alpha \frac{zG'(z)}{G(z)} - \alpha |-(1 + \beta)|$$

$$= \frac{1}{|G(z)|} \left| \alpha zG'(z) - (\alpha - 1)G(z) - ke^{i\theta} \right| \alpha zG'(z) - \alpha G(z)| - (1 + \beta)G(z)|$$

$$< \frac{|z|}{|G(z)|} \left[\beta + \sum_{n=2}^{\infty} \left| \alpha(n - 1)(1 + k) - \beta \right| A_n(\lambda, \gamma, m) |a_n| \right]$$

Certain subclass of polylogarithm functions defined by a generalized D.O. 265

since

$$R - L > \frac{|z|}{|G(z)|} \Big[2(1 - \beta) - 2\sum_{n=2}^{\infty} [1 - \beta + \alpha(n-1)(1+k)] A_n(\lambda, \gamma, m) |a_n| \Big] \ge 0,$$

the required condition (13) is satisfied.

In the next theorem we obtain a necessary and sufficient condition for a function $f \in T$ to be in the class $TS^m_{\lambda}(\gamma, \alpha, k, \beta)$.

Theorem 2. Let $f \in T$ given by (3). Then $f \in TS^m_{\lambda}(\gamma, \alpha, k, \beta)$ if and only if

$$\sum_{n=2}^{\infty} [1-\beta + \alpha(n-1)(1+k)]A_n(\lambda,\gamma,m)a_n \le 1-\beta$$
(16)

where $A_n(\lambda, \gamma, m)$ is defined by (14). The result is sharp.

Proof. Assume that inequality (16) holds true. In virtue of Theorem 1 and the definition of $TS_{\lambda}^{m}(\gamma, \alpha, k, \beta)$. Choosing the values of z on the positive real axis the inequality (11) reduces to

$$\frac{1-\sum_{n=2}^{\infty} [1+\alpha(n-1)]A_n(\lambda,\gamma,m)a_n z^{n-1}}{1-\sum_{n=2}^{\infty} A_n(\lambda,\gamma,m)a_n z^{n-1}} -\beta > k \left| \frac{\sum_{n=2}^{\infty} \alpha(n-1)A_n(\lambda,\gamma,m)a_n z^{n-1}}{1-\sum_{n=2}^{\infty} A_n(\lambda,\gamma,m)a_n z^{n-1}} \right|.$$
(17)

Letting $z \to 1^-$, we obtain the desired inequality. Finally equality holds for the function f defined by

$$f(z) = z - \frac{1 - \beta}{[1 - \beta + \alpha(n-1)(1+k)]A_n(\lambda, \gamma, m)} z^n \ (n \ge 2).$$
(18)

Corollary 1. If $f \in TS^m_{\lambda}(\gamma, \alpha, k, \beta)$, then

$$a_n \le \frac{1 - \beta}{[1 - \beta + \alpha(n - 1)(1 + k)]A_n(\lambda, \gamma, m)} \quad (n \ge 2).$$
(19)

Equality is obtained for the function f given by (18).

3 Growth and Distortion theorem

Theorem 3. Let $f \in TS^m_{\lambda}(\gamma, \alpha, k, \beta)$. Then for |z| = r < 1

$$r - \frac{(1-\beta)}{B_2(\lambda,\gamma,m,\alpha,k,\beta)}r^2 \le |f(z)| \le r + \frac{(1-\beta)}{B_2(\lambda,\gamma,m,\alpha,k,\beta)}r^2$$
(20)

and

$$1 - \frac{2(1-\beta)}{B_2(\lambda,\gamma,m,\alpha,k,\beta)}r^2 \le |f'(z)| \le 1 + \frac{2(1-\beta)}{B_2(\lambda,\gamma,m,\alpha,k,\beta)}r$$
(21)

where

$$B_n(\lambda,\gamma,m,\alpha,k,\beta) = [1-\beta + \alpha(n-1)(1+k)]A_n(\lambda,\gamma,m) \ (n \ge 2).$$
(22)

The inequalities (20) and (21) are sharp for the function f given by

$$f(z) = z - \frac{(1-\beta)}{B_2(\lambda, \gamma, m, \alpha, k, \beta)} z^2.$$

Proof. Since $f \in TS^m_{\lambda}(\gamma, \alpha, k, \beta)$ and from Theorem 2, it follows $\sum_{n=2}^{\infty} B_n(\lambda, \gamma, m, \alpha, k, \beta) a_n \leq (1 - \beta), \text{ where } B_n(\lambda, \gamma, m, \alpha, k, \beta) \text{ is given by (22),}$ we have

$$B_{2}(\lambda,\gamma,m,\alpha,k,\beta)\sum_{n=2}^{\infty}a_{n} = \sum_{n=2}^{\infty}B_{2}(\lambda,\gamma,m,\alpha,k,\beta)a_{n}$$
$$\leq \sum_{n=2}^{\infty}B_{n}(\lambda,\gamma,m,\alpha,k,\beta)a_{n}$$
$$\leq 1-\beta$$

and therefore

$$\sum_{n=2}^{\infty} a_n \le \frac{(1-\beta)}{B_2(\lambda,\gamma,m,\alpha,k,\beta)}.$$
(23)

Since f is given by (3), we obtain

$$\begin{split} |f(z)| &\leq |z| + |z|^2 \sum_{n=2}^{\infty} a_n |z|^{n-2} \\ &\leq r + r^2 \sum_{n=2}^{\infty} a_n \\ &\leq r + \frac{(1-\beta)}{B_2(\lambda,\gamma,m,\alpha,k,\beta)} r^2 \\ \text{and } |f(z)| &\geq |z| - |z|^2 \sum_{n=2}^{\infty} a_n |z|^{n-2} \\ &\geq r - r^2 \sum_{n=2}^{\infty} a_n \\ &\geq r - \frac{(1-\beta)}{B_2(\lambda,\gamma,m,\alpha,k,\beta)} r^2. \end{split}$$

266

In view of Theorem (15), we also have

$$\begin{split} \frac{B_2(\lambda,\gamma,m,\alpha,k,\beta)}{2} \sum_{n=2}^{\infty} na_n &= \sum_{n=2}^{\infty} \frac{B_2(\lambda,\gamma,m,\alpha,k,\beta)}{2} na_n \\ &\leq \sum_{n=2}^{\infty} (B_n,\lambda,\gamma,m,\alpha,k,\beta) a_n \leq (1-\beta) \\ \text{which yields } \sum_{n=2}^{\infty} na_n &\leq \frac{2(1-\beta)}{B_2(\lambda,\gamma,m,\alpha,k,\beta)}. \\ \text{Thus, } |f'(z)| &\leq 1 + \sum_{n=2}^{\infty} na_n |z|^{n-1} \\ &\leq 1 + r \sum_{n=2}^{\infty} na_n \\ &\leq 1 + \frac{2(1-\beta)}{B_2(\lambda,\gamma,m,\alpha,k,\beta)} r \\ \text{and } |f'(z)| &\geq 1 - \sum_{n=2}^{\infty} na_n |z|^{n-1} \\ &\geq 1 - r \sum_{n=2}^{\infty} na_n \\ &\geq 1 - \frac{2(1-\beta)}{B_2(\lambda,\gamma,m,\alpha,k,\beta)} r. \end{split}$$

Now, the proof of our theorem is completed.

4 Extreme points

Next, we examine the extreme points for the function class $TS^m_{\lambda}(\gamma, \alpha, k, \beta)$.

Theorem 4. Let the functions $f_1(z) = z$ and

$$f_n(z) = z - \frac{(1-\beta)}{B_n(\lambda, \gamma, m, \alpha, k, \beta)} z^n$$

$$(0 \le \lambda \le 1, \ 0 \le \gamma \le 1, \ m \in N, \ \alpha \ge 1, \ k \ge 0, \ 0 \le \beta < 1, \ n \ge 2).$$
(24)

Then $f \in TS^m_{\lambda}(\gamma, \alpha, k, \beta)$ if and only if

$$f(z) = \sum_{n=2}^{\infty} \lambda_n f_n(z) \ (z \in E), \text{ where } \lambda_n \ge 0 \ (n \ge 1) \text{ and } \sum_{n=1}^{\infty} \lambda_n = 1.$$
 (25)

Proof. Assume that f can be written as in (25). Then

$$f(z) = \lambda_1 z + \sum_{n=2}^{\infty} \lambda_n \Big[z - \frac{(1-\beta)}{B_n(\lambda,\gamma,m,\alpha,k,\beta)} z^n \Big]$$
$$= z - \sum_{n=2}^{\infty} \lambda_n \frac{(1-\beta)}{B_n(\lambda,\gamma,m,\alpha,k,\beta)} z^n.$$
since $\sum_{n=2}^{\infty} B_n(\lambda,\gamma,m,\alpha,k,\beta) \lambda_n \frac{(1-\beta)}{B_n(\lambda,\gamma,m,\alpha,k,\beta)}$
$$= (1-\beta) \sum_{n=2}^{\infty} \lambda_n$$
$$= (1-\beta)(1-\lambda_1) \le (1-\beta)$$

it follows in virtue of Theorem 2 that $f \in TS^m_{\lambda}(\gamma, \alpha, k, \beta)$. Conversely, suppose $f \in TS^m_{\lambda}(\gamma, \alpha, k, \beta)$ and consider

$$\lambda_n = \frac{B_n(\lambda, \gamma, m, \alpha, k, \beta)}{(1 - \beta)} a_n, \ n \ge 2$$

and $\lambda_1 = 1 - \sum_{n=2}^{\infty} \lambda_n.$
Then $f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z).$

Hence the proof is completed.

5 Radii of Starlikeness, Convexity and close to Convexity

We begin this section with the following Theorem.

Theorem 5. Let the function f given by (3) be in the class $TS_{\lambda}^{m}(\gamma, \alpha, k, \beta)$. Then f is starlike of order ρ ($0 \le \rho < 1$) in $|z| < r_1(\lambda, \gamma, m, \alpha, k, \beta)$, where

$$r_1(\lambda,\gamma,m,\alpha,k,\beta) = \inf_{n \ge 2} \left[\frac{(1-\rho)B_n(\lambda,\gamma,m,\alpha,k,\beta)}{(n-\rho)(1-\beta)} \right]^{\frac{1}{n-1}}.$$

Proof. To prove the theorem we must show that $\left|\frac{zf'(z)}{f(z)} - 1\right| \le 1 - \rho, \ 0 \le \rho < 1$

for $z \in E$ with $|z| < r_1(\lambda, \gamma, m, \alpha, k, \beta)$. We have

$$\left|\frac{zf'(z)}{f(z)} - 1\right| = \left|\frac{-\sum_{n=2}^{\infty} (n-1)a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} a_n z^{n-1}}\right|$$
$$\leq \frac{\sum_{n=2}^{\infty} (n-1)a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}}.$$
Thus $\left|\frac{zf'(z)}{f(z)} - 1\right| \leq 1 - \rho$ if $\sum_{n=2}^{\infty} \frac{(n-\rho)}{(1-\rho)}a_n |z|^{n-1} \leq 1.$ (26)

In virtue of (16), we have $\frac{\sum B_n(\lambda,\gamma,m,\alpha,k,\beta)}{1-\beta}a_n \leq 1$. Hence, the inequality (26) will be true if

$$\frac{(n-\rho)}{(1-\rho)}|z|^{n-1} \le \frac{B_n(\lambda,\gamma,m,\alpha,k,\beta)}{1-\beta} \ (n\ge 2).$$

or if $|z| \le \left[\frac{(1-\rho)B_n(\lambda,\gamma,m,\alpha,k,\beta)}{(n-\rho)(1-\beta)}\right]^{\frac{1}{n-1}} \ (n\ge 2).$

Thus the proof of the theorem is completed.

Theorem 6. Let the function f is given by (3) be in the class $TS^m_{\lambda}(\gamma, \alpha, k, \beta)$. Then f is convex of order ρ ($0 \le \rho < 1$) in $|z| < r_2(\lambda, \gamma, m, \alpha, k, \beta)$, where

$$r_2(\lambda,\gamma,m,\alpha,k,\beta) = \inf_{n \ge 2} \left[\frac{(1-\rho)B_n(\lambda,\gamma,m,\alpha,k,\beta)}{n(n-\rho)(1-\beta)} \right]^{\frac{1}{n-1}}$$

Theorem 7. Let the function f given by (3) be in the class $TS^m_{\lambda}(\gamma, \alpha, k, \beta)$. Then f in close-to-convex of order ρ ($0 \le \rho < 1$) in $|z| < r_3(\lambda, \gamma, m, \alpha, k, \beta)$, where

$$r_3(\lambda,\gamma,m,\alpha,k,\beta) = \inf_{n \ge 2} \left[\frac{(1-\rho)B_n(\lambda,\gamma,m,\alpha,k,\beta)}{n(1-\beta)} \right]^{\frac{1}{n-1}}$$

Proof. The proof of Theorem 6 and Theorem 7 is analogous to that of Theorem 5, so we omit the details \Box

6 The Fekete-Szego problem for the function class $S^m_{\lambda}(\gamma, \alpha, k, \beta)$

In this section we obtain the Fekete-Szego inequality for the functions in the class $S^m_{\lambda}(\gamma, \alpha, k, \beta)$. In the order to prove our main result we need the following lemma.

Lemma 2. [6] If $p(z) = 1 + c_1 z + c_2 z + c_3 z^2 + \cdots$ is an analytic function with positive real part in E then $|c_2 - \nu c_1^2| = \begin{cases} -4\nu + 2 & \nu \le 0\\ 2, & 0 \le \nu \le 1\\ 4\nu - 2, & \nu \ge 1 \end{cases}$

when $\nu < 0$ or $\nu > 1$ the inequality holds if and only if $p(z) = \frac{1+z}{1-z}$ or one of its rotations. If $0 < \nu < 1$ then the equality holds if and only if

$$p(z) = \frac{1+z^2}{1-z^2}$$

or one of rotations. If $\nu = 0$ the equality holds if and only if

$$p(z) = \left(\frac{1+\delta}{2}\right)\frac{1+z}{1-z} + \left(\frac{1-\delta}{2}\right)\frac{1-z}{1+z} \quad (0 \le \delta \le 1) \text{ or one of its rotations.}$$

If $\nu = 1$, the equality holds if and only if p(z) is the reciprocal of one of the functions such that the equality holds in the case of $\nu = 0$.

Theorem 8. Let $\alpha \ge 1$, $0 \le k \le \beta < 1$. If $f \in S^m_{\lambda}(\gamma, \alpha, k, \beta)$ is given by (1) then

$$|a_{3}-\mu a_{2}^{2}| = \begin{cases} \frac{(1-\beta)}{\alpha^{2}(1-k)^{2}A_{3}(\lambda,\gamma,m)} \Big[\alpha(1-k) + 2(1-\beta) - 4\mu(1-\beta)\frac{A_{3}(\lambda,\gamma,m)}{A_{2}^{2}(\lambda,\gamma,m)} \Big], \mu \leq \sigma_{1} \\ \frac{(1-\beta)}{\alpha(1-k)A_{3}(\lambda,\gamma,m)}, & \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{-(1-\beta)}{\alpha^{2}(1-k)^{2}A_{3}(\lambda,\gamma,m)} \Big[\alpha(1-k) + 2(1-\beta) - 4\mu(1-\beta)\frac{A_{3}(\lambda,\gamma,m)}{A_{2}^{2}(\lambda,\gamma,m)} \Big], \mu \geq \sigma_{2}, \end{cases}$$

where

$$\sigma_1 = \frac{A_2^2(\lambda, \gamma, m)}{2A_3(\lambda, \gamma, m)} \text{ and } \sigma_2 = \frac{A_2^2(\lambda, \gamma, m)[1 - \beta + \alpha(1 - k)]}{2A_3(\lambda, \gamma, m)(1 - \beta)}.$$

The result is sharp.

Proof. Since $\mathbb{R}(w) \leq |w|$ for any complex numbers, $f \in S^m_{\lambda}(\gamma, \alpha, k, \beta)$ implies that

$$\mathbb{R} \left[\alpha \frac{zG'(z)}{G(z)} - (\alpha - 1) \right] > k \mathbb{R} \left[\alpha \frac{zG'(z)}{G(z)} - \alpha \right] + \beta$$

or that $\mathbb{R} \frac{zG'(z)}{G(z)} > \frac{\beta - 1 + \alpha(1 - k)}{\alpha(1 - k)}$.
Hence $G \in S^* \left(\frac{\beta - 1 + \alpha(1 - k)}{\alpha(1 - k)} \right)$.
Let $p(z) = \frac{\frac{zG'(z)}{G(z)} - \frac{\beta - 1 + \alpha(1 - k)}{\alpha(1 - k)}}{\frac{1 - \beta}{\alpha(1 - k)}}$
 $= 1 + c_1 z + c_2 z^2 + \cdots$.

Then by virtue of (10) and (12), we have

$$a_{2} = \frac{(1-\beta)}{\alpha(1-k)A_{2}(\lambda,\gamma,m)}c_{1} \text{ and } a_{3} = \frac{(1-\beta)}{2\alpha(1-k)A_{2}(\lambda,\gamma,m)} \Big[c_{2} + \frac{1-\beta}{\alpha(1-k)}c_{1}^{2}\Big].$$

Therefore we obtain

$$a_{3} - \mu a_{2}^{2} = \frac{(1-\beta)}{2\alpha(1-k)A_{3}(\lambda,\gamma,m)} [c_{2} - \frac{1-\beta}{\alpha(1-k)}c_{1}^{2}] - \mu \frac{(1-\beta)^{2}}{\alpha^{2}(1-k)^{2}A_{2}^{2}(\lambda,\gamma,m)}c_{1}^{2}$$
$$= \frac{(1-\beta)}{2\alpha(1-k)A_{3}(\lambda,\gamma,m)} \Big[c_{2} - \frac{1-\beta}{\alpha(1-k)}c_{1}^{2}\Big(2\mu \frac{A_{3}(\lambda,\gamma,m)}{A_{1}^{2}(\lambda,\gamma,m)} - 1\Big)\Big].$$

We write

$$a_3 - \mu a_2^2 = \frac{(1-\beta)}{2\alpha(1-k)A_3(\lambda,\gamma,m)}(c_2 - \rho c_1^2),$$

where

$$\rho = \frac{(1-\beta)}{\alpha(1-k)} \left[2\mu \frac{A_3(\lambda,\gamma,m)}{A_2^2(\lambda,\gamma,m)} - 1 \right]$$

Our result follows by the application of the above lemma. Denote

$$\xi = \frac{\beta - 1 + \alpha(1 - k)}{\alpha(1 - k)}.$$

If $\mu < \sigma_1$ or $\mu > \sigma_2$, then the equality holds true if and only if

$$G(z) = \frac{z}{(1 - e^{i\theta}z)^{2(1-\xi)}} \ (\theta \in R).$$

When $\sigma_1 < \mu < \sigma_2$, the equality holds true if and only if

$$G(z) = \frac{z}{(1 - e^{i\theta}z^2)^{(1-\xi)}} \ (\theta \in R).$$

If $\mu = \sigma_1$ then the equality holds true if and only if

$$G(z) = \left[\frac{z}{(1-e^{i\theta}z)^{2(1-\xi)}}\right]^{\frac{1+\delta}{2}} \left[\frac{z}{(1+e^{i\theta}z)^{2(1-\xi)}}\right]^{\frac{1-\delta}{2}} = \frac{z}{\left[(1-e^{i\theta}z)^{1+\delta}(1+e^{i\theta}z)^{1-\delta}\right]^{1-\xi}}, \quad (0 \le \delta \le 1, \ \theta \in R).$$

Finally, when $\mu = \sigma_2$, the equality holds true if and only if p(z) is the reciprocal of one of the functions such that equality and holds true in the case of $\mu = \sigma_2$. \Box

Acknowledgement. The authors express their sincere thanks to the esteemed referee(s) for their careful readings, valuable suggestions and comments, which helped them to improve the presentation of the paper

References

- Al-Shaqsi, K., and Darus, M., An operator defined by convolution involving the polylogarithms functions, J. Math. Stat., 4(1) (2008), 46-50.
- [2] Goodman, A. W., On uniformly convex functions, Ann. Polon.Math., 56(1)(1991), 87-92.
- [3] Goodman, A. W., On uniformly starlike functions, J. Math. Anal. Appl., 155(2)(1991), 364-370.
- [4] Kanas, S., and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Int. Transf. Spec. Funct., 9(2)(2000), 121-132.
- [5] Ma, W., and Minda, D., Uniformly convex functions, Ann. Polon. Math., 57 (1992), 165-175.
- [6] Ma, W., and Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, Peoples Republic of China; June 19-23, 1992), (Z. Li, F. Ren, L. Yang and S. Zhang, eds), International Press, Cambridge, Massachusetts, (1994), 157-169.
- [7] Ponnusamy, S., and Sabapathy, S., Polylogarithms in the theory of univalent functions, Results in Math., 30 (1996), 136-150.
- [8] Ponnusamy, S., Inclusion theorems for convolution product of second order polylogarithms and functions with the derivative in a halfplane, Rocky Mountain J. Math., 28(2) (1998), 695-733.
- [9] Ronning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer.Math. Soc., 118(1) (1993), 189-196.
- [10] Ruscheweyh, St., New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
- [11] Salagean, G. S., Subclasses of univalent functions, Lecture Note in Math.(SpringerVerlag), 1013 (1983), 362-372.
- [12] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.
- [13] Swapna, G., Venkateswarlu, B., and Thirupathi Reddy, P., Notes on meromorphic functions with positive coefficients involving polylogarithm function, The Bull. of Irkutsk State Uni. Series Math., (Accepted).