CERTAIN SUBCLASS OF POLYLOGARITHM FUNCTIONS DEFINED BY A GENERALIZED DIFFERENTIAL OPERATOR

N. RANI ${ }^{1}$, P. Thirupathi REDDY ${ }^{2}$ and B. VENKATESWARLU ${ }^{*, 3}$

Abstract

In this paper, we define a new subclass of polylogarithm functions and obtained coefficient estimates, growth and distortion theorems, extreme points, radii of starlikeness, convexity and close to convexity for the class $T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$. Furthermore, we obtained the Fekete-Szego problem for the class also.

2000 Mathematics Subject Classification: 30C45.
Key words: polylogarithm function, coefficient estimates, extreme points, radius of starlikeness.

1 Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic and univalent in the open $\operatorname{disc} U=\{z \in \mathbb{C}:|z|<1\}$. A function f in the class of A is said to be in the class $S^{*}(\beta)$ of starlike functions of order β in E, if it satisfy the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta,(z \in E, 0 \leq \beta<1) \tag{2}
\end{equation*}
$$

[^0]Note that $S^{*}(0)=S^{*}$ is the class of starlike functions. Denote by T the subclass of A consisting of functions f of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad\left(a_{n} \geq 0\right) \tag{3}
\end{equation*}
$$

This subclass was introduced and studied by Silverman [12]. For function $f \in A$ given by (1) and $g(z) \in A$ given by

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

we define the Hadmard product (or convolution) of f and g by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}, z \in E \tag{4}
\end{equation*}
$$

Let $f \in A$. Denote by $\mathfrak{D}^{\lambda}: A \rightarrow A$ the operator defined by

$$
\mathfrak{D}^{\lambda}=\frac{z}{(1-z)^{\lambda+1}} * f(z)(\lambda>-1)
$$

It is obivious that $\mathfrak{D}^{0} f(z)=f(z), \mathfrak{D}^{1} f(z)=z f^{\prime}(z)$ and

$$
\begin{gathered}
\qquad \mathfrak{D}^{\lambda} f(z)=\frac{z\left(z^{\lambda-1} f(z)\right)}{\lambda},\left(\lambda \in N_{0}=N \cup 0\right) \\
\text { Note that } \mathfrak{D}^{\lambda} f(z)=z+\sum_{n=2}^{\infty} c(n, \lambda) a_{n} z^{n} \\
\text { where } c(n, \lambda)=\binom{n+\lambda-1}{\lambda} \text { and } \lambda \in N_{0}
\end{gathered}
$$

The operator $\mathfrak{D}^{\lambda} f$ is called the Ruscheweyh derivative operator [10]. We recall here the definition of well known generalization of the polylogarithm function $G(m, z)$ given by

$$
\begin{equation*}
G(m, z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}}, \quad(m \in \mathbb{C}, z \in E) \tag{5}
\end{equation*}
$$

We note that $G(-1, z)=\frac{z}{(1-z)^{2}}$ is Koebe function.
For more about polylogarithms in the theory of univalent functions see $[1,7,8]$ and [13].

We now introduce a function $(G(m, z))^{-1}$ given by

$$
\begin{equation*}
G(m, z) *(G(m, z))^{-1}=\frac{z}{(1-z)^{\lambda+1}}, \lambda>-1, m \in \mathbb{C} \tag{6}
\end{equation*}
$$

and obtain the following linear operator

$$
\begin{equation*}
\mathfrak{D}^{\lambda} f(z)=(G(m, z))^{-1} * f(z) . \tag{7}
\end{equation*}
$$

Now we find the explicit form of the function $(G(m, z))^{-1}$, it is well known that $\lambda>-1$.

$$
\begin{equation*}
\frac{z}{(1-z)^{\lambda+1}}=\sum_{n=0}^{\infty} \frac{(\lambda+n)}{n!} z^{n+1},(z \in E) . \tag{8}
\end{equation*}
$$

Putting (6) and (8) in (7), we get

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}} *(G(m, z))^{-1}=\sum_{n=1}^{\infty} \frac{(n+\lambda-1)}{\lambda(n-1)} z^{n}
$$

Therefore the function $(G(m, z))^{-1}$ has the following form

$$
(G(m, z))^{-1}=\sum_{n=1}^{\infty} \frac{(n+\lambda-1)!}{\lambda!(n-1)!} z^{n}, \quad(z \in \mathbb{C})
$$

For $m, \lambda \in N_{0}$, we note that

$$
\begin{equation*}
\mathfrak{D}_{\lambda}^{m} f(z)=z+\sum_{n=2}^{\infty} n^{m} \frac{(n+\lambda-1)!}{\lambda!(n-1)!} a_{n} z^{n},(z \in \mathbb{C}) \tag{9}
\end{equation*}
$$

Note that $\mathfrak{D}_{0}^{m} \cong \mathfrak{D}^{m}$ and $\mathfrak{D}_{\lambda}^{0} \cong \mathfrak{D}^{\lambda}$ which were Salagean [11] and Ruschewey [10] derivative operators respectively. It is clear that the operator $\mathfrak{D}_{\lambda}^{m}$ included two known derivative operators. Also note that $\mathfrak{D}_{0}^{0} f(z)=f(z)$ and $\mathfrak{D}_{0}^{1} f(z)=$ $\mathfrak{D}_{1}^{0} f(z)=z f^{\prime}(z)$. If $f \in T$ is given by (3) then we have

$$
\begin{align*}
\mathfrak{D}_{\lambda}^{m} f(z) & =z-\sum_{n=2}^{\infty} n^{m} \frac{(n+\lambda-1)!}{\lambda!(n-1)!} a_{n} z^{n}, \quad(z \in \mathbb{C}) \\
& =z+\sum_{n=2}^{\infty} n^{m} c(n, \lambda) a_{n} z^{n} \tag{10}\\
\text { where } \quad c(n, \lambda) & =\binom{n+\lambda-1}{\lambda} .
\end{align*}
$$

Using the differential operator (9), we define the following a new subclass of the class A.

Definition 1. For $0 \leq \gamma \leq 1, \alpha \geq 1, k \geq 0$ and $0 \leq \beta<1$, a function $f \in A$ is said to be in the class $S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ if it satisfy the condition

$$
\begin{equation*}
\mathbb{R}\left\{\alpha \frac{z G^{\prime}(z)}{G(z)}-(\alpha-1)\right\}>k\left|\alpha \frac{z G^{\prime}(z)}{G(z)}-\alpha\right|+\beta \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
G(z)=(1-\gamma) \mathfrak{D}_{\lambda}^{m} f(z)+\gamma z\left(\mathfrak{D}_{\lambda}^{m} f(z)\right)^{\prime} \tag{12}
\end{equation*}
$$

We also define $T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)=S_{\lambda}^{m}(\gamma, \alpha, k, \beta) \cap T$.

By suitably specializing the parameters involved, the class $S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ and if it satisfy the condition $T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ can be reduced to new or to known much simpler classes of functions which were studied in earlier works (see [2, 3, 4, 5, 9]). The object of this paper is to study various properties for functions belonging to the class $S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ and $T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ respectively.

2 Coefficient estimates

In order to prove our results from this section we need the following lemma.
Lemma 1. Let β be a real number and w be a complex number. Then $\mathbb{R}(w) \geq$ β if and only if

$$
|w+(1-\beta)|-|w-(1+\beta)| \geq 0
$$

First we give a sufficient coefficient bound for functions in the class $S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$.
Theorem 1. Let $f \in A$ given by (1). If

$$
\begin{equation*}
\sum_{n=2}^{\infty}[1-\beta+\alpha(n-1)(1+k)] A_{n}(\lambda, \gamma, m)\left|a_{n}\right| \leq 1-\beta \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}(\lambda, \gamma, m)=[1+\gamma(m-1)] n^{m} c(n, \lambda) \tag{14}
\end{equation*}
$$

Then $f \in S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$.
Proof. In virtue of Definition 1 and Lemma 1, it is sufficient to show that

$$
\begin{align*}
& \left|\alpha \frac{z G^{\prime}(z)}{G(z)}-(\alpha-1)-k\right| \alpha \frac{z G^{\prime}(z)}{G(z)}-\alpha|-(1+\beta)| \\
\leq & \left|\alpha \frac{z G^{\prime}(z)}{G(z)}-(\alpha-1)-k\right| \alpha \frac{z G^{\prime}(z)}{G(z)}-\alpha|+(1+\beta)| . \tag{15}
\end{align*}
$$

For the right hand and left hand side of (15) we may respectively, write

$$
\begin{aligned}
R & =\left|\alpha \frac{z G^{\prime}(z)}{G(z)}-(\alpha-1)-k\right| \alpha \frac{z G^{\prime}(z)}{G(z)}-\alpha|+(1-\beta)| \\
& =\frac{1}{|G(z)|}\left|\alpha z G^{\prime}(z)-(\alpha-1) G(z)-k e^{i \theta}\right| \alpha z G^{\prime}(z)-\alpha G(z)|+(1-\beta) G(z)| \\
& >\frac{|z|}{|G(z)|}\left[2-\beta-\sum_{n=2}^{\infty} 2-\beta+\alpha(n-1)(k+1)\right] A_{n}(\lambda, \gamma, m)\left|a_{n}\right|
\end{aligned}
$$

and similarly

$$
\begin{aligned}
L & =\left|\alpha \frac{z G^{\prime}(z)}{G(z)}-(\alpha-1)-k\right| \alpha \frac{z G^{\prime}(z)}{G(z)}-\alpha|-(1+\beta)| \\
& =\frac{1}{|G(z)|}\left|\alpha z G^{\prime}(z)-(\alpha-1) G(z)-k e^{i \theta}\right| \alpha z G^{\prime}(z)-\alpha G(z)|-(1+\beta) G(z)| \\
& <\frac{|z|}{|G(z)|}\left[\beta+\sum_{n=2}^{\infty}|\alpha(n-1)(1+k)-\beta| A_{n}(\lambda, \gamma, m)\left|a_{n}\right|\right]
\end{aligned}
$$

since

$$
R-L>\frac{|z|}{|G(z)|}\left[2(1-\beta)-2 \sum_{n=2}^{\infty}[1-\beta+\alpha(n-1)(1+k)] A_{n}(\lambda, \gamma, m)\left|a_{n}\right|\right] \geq 0
$$

the required condition (13) is satisfied.
In the next theorem we obtain a necessary and sufficient condition for a function $f \in T$ to be in the class $T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$.

Theorem 2. Let $f \in T$ given by (3). Then $f \in T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[1-\beta+\alpha(n-1)(1+k)] A_{n}(\lambda, \gamma, m) a_{n} \leq 1-\beta \tag{16}
\end{equation*}
$$

where $A_{n}(\lambda, \gamma, m)$ is defined by (14). The result is sharp.
Proof. Assume that inequality (16) holds true. In virtue of Theorem 1 and the definition of $T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$. Choosing the values of z on the positive real axis the inequality (11) reduces to

$$
\begin{equation*}
\frac{1-\sum_{n=2}^{\infty}[1+\alpha(n-1)] A_{n}(\lambda, \gamma, m) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} A_{n}(\lambda, \gamma, m) a_{n} z^{n-1}}-\beta>k\left|\frac{\sum_{n=2}^{\infty} \alpha(n-1) A_{n}(\lambda, \gamma, m) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} A_{n}(\lambda, \gamma, m) a_{n} z^{n-1}}\right| . \tag{17}
\end{equation*}
$$

Letting $z \rightarrow 1^{-}$, we obtain the desired inequality. Finally equality holds for the function f defined by

$$
\begin{equation*}
f(z)=z-\frac{1-\beta}{[1-\beta+\alpha(n-1)(1+k)] A_{n}(\lambda, \gamma, m)} z^{n}(n \geq 2) . \tag{18}
\end{equation*}
$$

Corollary 1. If $f \in T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$, then

$$
\begin{equation*}
a_{n} \leq \frac{1-\beta}{[1-\beta+\alpha(n-1)(1+k)] A_{n}(\lambda, \gamma, m)}(n \geq 2) \tag{19}
\end{equation*}
$$

Equality is obtained for the function f given by (18).

3 Growth and Distortion theorem

Theorem 3. Let $f \in T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$. Then for $|z|=r<1$

$$
\begin{equation*}
r-\frac{(1-\beta)}{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)} r^{2} \leq|f(z)| \leq r+\frac{(1-\beta)}{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)} r^{2} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\frac{2(1-\beta)}{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)} r^{2} \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(1-\beta)}{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)} r \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{n}(\lambda, \gamma, m, \alpha, k, \beta)=[1-\beta+\alpha(n-1)(1+k)] A_{n}(\lambda, \gamma, m)(n \geq 2) \tag{22}
\end{equation*}
$$

The inequalities (20) and (21) are sharp for the function f given by

$$
f(z)=z-\frac{(1-\beta)}{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)} z^{2} .
$$

Proof. Since $f \in T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ and from Theorem 2, it follows $\sum_{n=2}^{\infty} B_{n}(\lambda, \gamma, m, \alpha, k, \beta) a_{n} \leq(1-\beta)$, where $B_{n}(\lambda, \gamma, m, \alpha, k, \beta)$ is given by (22), we have

$$
\begin{aligned}
B_{2}(\lambda, \gamma, m, \alpha, k, \beta) \sum_{n=2}^{\infty} a_{n} & =\sum_{n=2}^{\infty} B_{2}(\lambda, \gamma, m, \alpha, k, \beta) a_{n} \\
& \leq \sum_{n=2}^{\infty} B_{n}(\lambda, \gamma, m, \alpha, k, \beta) a_{n} \\
& \leq 1-\beta
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{(1-\beta)}{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)} \tag{23}
\end{equation*}
$$

Since f is given by (3), we obtain

$$
\begin{aligned}
|f(z)| & \leq|z|+|z|^{2} \sum_{n=2}^{\infty} a_{n}|z|^{n-2} \\
& \leq r+r^{2} \sum_{n=2}^{\infty} a_{n} \\
& \leq r+\frac{(1-\beta)}{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)} r^{2} \\
\text { and }|f(z)| & \geq|z|-|z|^{2} \sum_{n=2}^{\infty} a_{n}|z|^{n-2} \\
& \geq r-r^{2} \sum_{n=2}^{\infty} a_{n} \\
& \geq r-\frac{(1-\beta)}{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)} r^{2} .
\end{aligned}
$$

In view of Theorem (15), we also have

$$
\begin{aligned}
\frac{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)}{2} \sum_{n=2}^{\infty} n a_{n} & =\sum_{n=2}^{\infty} \frac{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)}{2} n a_{n} \\
& \leq \sum_{n=2}^{\infty}\left(B_{n}, \lambda, \gamma, m, \alpha, k, \beta\right) a_{n} \leq(1-\beta) \\
\text { which yields } \sum_{n=2}^{\infty} n a_{n} & \leq \frac{2(1-\beta)}{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)} . \\
\text { Thus, }\left|f^{\prime}(z)\right| & \leq 1+\sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \\
& \leq 1+r \sum_{n=2}^{\infty} n a_{n} \\
& \leq 1+\frac{2(1-\beta)}{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)} r \\
\text { and }\left|f^{\prime}(z)\right| & \geq 1-\sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \\
& \geq 1-r \sum_{n=2}^{\infty} n a_{n} \\
& \geq 1-\frac{2(1-\beta)}{B_{2}(\lambda, \gamma, m, \alpha, k, \beta)} r .
\end{aligned}
$$

Now, the proof of our theorem is completed.

4 Extreme points

Next, we examine the extreme points for the function class $T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$.
Theorem 4. Let the functions $f_{1}(z)=z$ and

$$
\begin{align*}
& f_{n}(z)=z-\frac{(1-\beta)}{B_{n}(\lambda, \gamma, m, \alpha, k, \beta)} z^{n} \tag{24}\\
& (0 \leq \lambda \leq 1,0 \leq \gamma \leq 1, m \in N, \alpha \geq 1, k \geq 0,0 \leq \beta<1, n \geq 2)
\end{align*}
$$

Then $f \in T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ if and only if

$$
\begin{equation*}
f(z)=\sum_{n=2}^{\infty} \lambda_{n} f_{n}(z)(z \in E), \text { where } \lambda_{n} \geq 0(n \geq 1) \text { and } \sum_{n=1}^{\infty} \lambda_{n}=1 \tag{25}
\end{equation*}
$$

Proof. Assume that f can be written as in (25). Then

$$
\begin{aligned}
& f(z)=\lambda_{1} z+\sum_{n=2}^{\infty} \lambda_{n}\left[z-\frac{(1-\beta)}{B_{n}(\lambda, \gamma, m, \alpha, k, \beta)} z^{n}\right] \\
&=z-\sum_{n=2}^{\infty} \lambda_{n} \frac{(1-\beta)}{B_{n}(\lambda, \gamma, m, \alpha, k, \beta)} z^{n} . \\
& \text { since } \sum_{n=2}^{\infty} B_{n}(\lambda, \gamma, m, \alpha, k, \beta) \lambda_{n} \frac{(1-\beta)}{B_{n}(\lambda, \gamma, m, \alpha, k, \beta)} \\
&=(1-\beta) \sum_{n=2}^{\infty} \lambda_{n} \\
&=(1-\beta)\left(1-\lambda_{1}\right) \leq(1-\beta)
\end{aligned}
$$

it follows in virtue of Theorem 2 that $f \in T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$. Conversely, suppose $f \in T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ and consider

$$
\begin{array}{r}
\lambda_{n}=\frac{B_{n}(\lambda, \gamma, m, \alpha, k, \beta)}{(1-\beta)} a_{n}, n \geq 2 \\
\text { and } \lambda_{1}=1-\sum_{n=2}^{\infty} \lambda_{n} . \\
\text { Then } f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z) .
\end{array}
$$

Hence the proof is completed.

5 Radii of Starlikeness, Convexity and close to Convexity

We begin this section with the following Theorem.

Theorem 5. Let the function f given by (3) be in the class $T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$. Then f is starlike of order $\rho(0 \leq \rho<1)$ in $|z|<r_{1}(\lambda, \gamma, m, \alpha, k, \beta)$, where

$$
r_{1}(\lambda, \gamma, m, \alpha, k, \beta)=\inf _{n \geq 2}\left[\frac{(1-\rho) B_{n}(\lambda, \gamma, m, \alpha, k, \beta)}{(n-\rho)(1-\beta)}\right]^{\frac{1}{n-1}}
$$

Proof. To prove the theorem we must show that $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho, \quad 0 \leq \rho<1$
for $z \in E$ with $|z|<r_{1}(\lambda, \gamma, m, \alpha, k, \beta)$. We have

$$
\begin{align*}
& \qquad \begin{aligned}
&\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|=\left|\frac{-\sum_{n=2}^{\infty}(n-1) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} a_{n} z^{n-1}}\right| \\
& \leq \frac{\sum_{n=2}^{\infty}(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}} \\
& \text { Thus }\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho \text { if } \sum_{n=2}^{\infty} \frac{(n-\rho)}{(1-\rho)} a_{n}|z|^{n-1} \leq 1
\end{aligned} .
\end{align*}
$$

In virtue of (16), we have $\frac{\sum_{n=2}^{\infty} B_{n}(\lambda, \gamma, m, \alpha, k, \beta)}{1-\beta} a_{n} \leq 1$.
Hence, the inequality (26) will be true if

$$
\begin{aligned}
\frac{(n-\rho)}{(1-\rho)}|z|^{n-1} & \leq \frac{B_{n}(\lambda, \gamma, m, \alpha, k, \beta)}{1-\beta}(n \geq 2) . \\
\text { or if }|z| & \leq\left[\frac{(1-\rho) B_{n}(\lambda, \gamma, m, \alpha, k, \beta)}{(n-\rho)(1-\beta)}\right]^{\frac{1}{n-1}}(n \geq 2) .
\end{aligned}
$$

Thus the proof of the theorem is completed.
Theorem 6. Let the function f is given by (3) be in the class $T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$. Then f is convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{2}(\lambda, \gamma, m, \alpha, k, \beta)$, where

$$
r_{2}(\lambda, \gamma, m, \alpha, k, \beta)=\inf _{n \geq 2}\left[\frac{(1-\rho) B_{n}(\lambda, \gamma, m, \alpha, k, \beta)}{n(n-\rho)(1-\beta)}\right]^{\frac{1}{n-1}} .
$$

Theorem 7. Let the function f given by (3) be in the class $T S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$. Then f in close-to-convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{3}(\lambda, \gamma, m, \alpha, k, \beta)$, where

$$
r_{3}(\lambda, \gamma, m, \alpha, k, \beta)=\inf _{n \geq 2}\left[\frac{(1-\rho) B_{n}(\lambda, \gamma, m, \alpha, k, \beta)}{n(1-\beta)}\right]^{\frac{1}{n-1}}
$$

Proof. The proof of Theorem 6 and Theorem 7 is analogous to that of Theorem 5 , so we omit the details

6 The Fekete-Szego problem for the function class
 $$
S_{\lambda}^{m}(\gamma, \alpha, k, \beta)
$$

In this section we obtain the Fekete-Szego inequality for the functions in the class $S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$. In the order to prove our main result we need the following lemma.

Lemma 2. [6] If $p(z)=1+c_{1} z+c_{2} z+c_{3} z^{2}+\cdots$ is an analytic function with positive real part in E then $\left|c_{2}-\nu c_{1}^{2}\right|= \begin{cases}-4 \nu+2 & \nu \leq 0 \\ 2, & 0 \leq \nu \leq 1 \\ 4 \nu-2, & \nu \geq 1\end{cases}$
when $\nu<0$ or $\nu>1$ the inequality holds if and only if $p(z)=\frac{1+z}{1-z}$ or one of its rotations. If $0<\nu<1$ then the equality holds if and only if

$$
p(z)=\frac{1+z^{2}}{1-z^{2}}
$$

or one of rotations. If $\nu=0$ the equality holds if and only if

$$
p(z)=\left(\frac{1+\delta}{2}\right) \frac{1+z}{1-z}+\left(\frac{1-\delta}{2}\right) \frac{1-z}{1+z} \quad(0 \leq \delta \leq 1) \text { or one of its rotations. }
$$

If $\nu=1$, the equality holds if and only if $p(z)$ is the reciprocal of one of the functions such that the equality holds in the case of $\nu=0$.
Theorem 8. Let $\alpha \geq 1,0 \leq k \leq \beta<1$. If $f \in S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ is given by (1) then
$\left|a_{3}-\mu a_{2}^{2}\right|=\left\{\begin{array}{l}\frac{(1-\beta)}{\alpha^{2}(1-k)^{2} A_{3}(\lambda, \gamma, m)}\left[\alpha(1-k)+2(1-\beta)-4 \mu(1-\beta) \frac{A_{3}(\lambda, \gamma, m)}{A_{2}^{2}(\lambda, \gamma, m)}\right], \mu \leq \sigma_{1} \\ \frac{(1-\beta)}{\alpha(1-k) A_{3}(\lambda, \gamma, m)}, \mu \leq \sigma_{2} \\ \frac{-(1-\beta)}{\alpha^{2}(1-k)^{2} A_{3}(\lambda, \gamma, m)}\left[\alpha(1-k)+2(1-\beta)-4 \mu(1-\beta) \frac{A_{3}(\lambda, \gamma, m)}{A_{2}^{2}(\lambda, \gamma, m)}\right], \mu \geq \sigma_{2},\end{array}\right.$
where

$$
\sigma_{1}=\frac{A_{2}^{2}(\lambda, \gamma, m)}{2 A_{3}(\lambda, \gamma, m)} \text { and } \sigma_{2}=\frac{A_{2}^{2}(\lambda, \gamma, m)[1-\beta+\alpha(1-k)]}{2 A_{3}(\lambda, \gamma, m)(1-\beta)} \text {. }
$$

The result is sharp.
Proof. Since $\mathbb{R}(w) \leq|w|$ for any complex numbers, $f \in S_{\lambda}^{m}(\gamma, \alpha, k, \beta)$ implies that

$$
\begin{array}{r}
\mathbb{R}\left[\alpha \frac{z G^{\prime}(z)}{G(z)}-(\alpha-1)\right]>k \mathbb{R}\left[\alpha \frac{z G^{\prime}(z)}{G(z)}-\alpha\right]+\beta \\
\text { or that } \mathbb{R} \frac{z G^{\prime}(z)}{G(z)}>\frac{\beta-1+\alpha(1-k)}{\alpha(1-k)} \\
\text { Hence } \quad G \in S^{*}\left(\frac{\beta-1+\alpha(1-k)}{\alpha(1-k)}\right) \\
\text { Let } \begin{aligned}
p(z) & =\frac{\frac{z G^{\prime}(z)}{G(z)}-\frac{\beta-1+\alpha(1-k)}{\alpha(1-k)}}{\frac{1-\beta}{\alpha(1-k)}} \\
& =1+c_{1} z+c_{2} z^{2}+\cdots
\end{aligned}
\end{array}
$$

Then by virtue of (10) and (12), we have
$a_{2}=\frac{(1-\beta)}{\alpha(1-k) A_{2}(\lambda, \gamma, m)} c_{1} \quad$ and $\quad a_{3}=\frac{(1-\beta)}{2 \alpha(1-k) A_{2}(\lambda, \gamma, m)}\left[c_{2}+\frac{1-\beta}{\alpha(1-k)} c_{1}^{2}\right]$.

Therefore we obtain

$$
\begin{aligned}
& a_{3}-\mu a_{2}^{2}=\frac{(1-\beta)}{2 \alpha(1-k) A_{3}(\lambda, \gamma, m)}\left[c_{2}-\frac{1-\beta}{\alpha(1-k)} c_{1}^{2}\right]-\mu \frac{(1-\beta)^{2}}{\alpha^{2}(1-k)^{2} A_{2}^{2}(\lambda, \gamma, m)} c_{1}^{2} \\
& =\frac{(1-\beta)}{2 \alpha(1-k) A_{3}(\lambda, \gamma, m)}\left[c_{2}-\frac{1-\beta}{\alpha(1-k)} c_{1}^{2}\left(2 \mu \frac{A_{3}(\lambda, \gamma, m)}{A_{1}^{2}(\lambda, \gamma, m)}-1\right)\right] .
\end{aligned}
$$

We write

$$
a_{3}-\mu a_{2}^{2}=\frac{(1-\beta)}{2 \alpha(1-k) A_{3}(\lambda, \gamma, m)}\left(c_{2}-\rho c_{1}^{2}\right),
$$

where

$$
\rho=\frac{(1-\beta)}{\alpha(1-k)}\left[2 \mu \frac{A_{3}(\lambda, \gamma, m)}{A_{2}^{2}(\lambda, \gamma, m)}-1\right]
$$

Our result follows by the application of the above lemma. Denote

$$
\xi=\frac{\beta-1+\alpha(1-k)}{\alpha(1-k)} .
$$

If $\mu<\sigma_{1}$ or $\mu>\sigma_{2}$, then the equality holds true if and only if

$$
G(z)=\frac{z}{\left(1-e^{i \theta} z\right)^{2(1-\xi)}}(\theta \in R) .
$$

When $\sigma_{1}<\mu<\sigma_{2}$, the equality holds true if and only if

$$
G(z)=\frac{z}{\left(1-e^{i \theta} z^{2}\right)^{(1-\xi)}}(\theta \in R) .
$$

If $\mu=\sigma_{1}$ then the equality holds true if and only if

$$
\begin{aligned}
G(z) & =\left[\frac{z}{\left(1-e^{i \theta} z\right)^{2(1-\xi)}}\right]^{\frac{1+\delta}{2}}\left[\frac{z}{\left(1+e^{i \theta} z\right)^{2(1-\xi)}}\right]^{\frac{1-\delta}{2}} \\
& =\frac{z}{\left[\left(1-e^{i \theta} z\right)^{1+\delta}\left(1+e^{i \theta} z\right)^{1-\delta}\right]^{1-\xi}}, \quad(0 \leq \delta \leq 1, \theta \in R) .
\end{aligned}
$$

Finally, when $\mu=\sigma_{2}$, the equality holds true if and only if $p(z)$ is the reciprocal of one of the functions such that equality and holds true in the case of $\mu=\sigma_{2}$.

Acknowledgement. The authors express their sincere thanks to the esteemed referee(s) for their careful readings, valuable suggestions and comments, which helped them to improve the presentation of the paper

References

[1] Al-Shaqsi, K., and Darus, M., An operator defined by convolution involving the polylogarithms functions, J. Math. Stat., 4(1) (2008), 46-50.
[2] Goodman, A. W., On uniformly convex functions, Ann. Polon.Math., $56(1)(1991), 87-92$.
[3] Goodman, A. W., On uniformly starlike functions, J. Math. Anal. Appl., 155(2)(1991), 364-370.
[4] Kanas, S., and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Int. Transf. Spec. Funct., 9(2)(2000), 121-132.
[5] Ma, W., and Minda, D., Uniformly convex functions, Ann. Polon. Math., 57 (1992), 165-175.
[6] Ma, W., and Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, Peoples Republic of China; June 19-23, 1992), (Z. Li, F. Ren, L. Yang and S. Zhang, eds), International Press, Cambridge, Massachusetts, (1994), 157-169.
[7] Ponnusamy, S., and Sabapathy, S., Polylogarithms in the theory of univalent functions, Results in Math., 30 (1996), 136-150.
[8] Ponnusamy, S., Inclusion theorems for convolution product of second order polylogarithms and functions with the derivative in a halfplane, Rocky Mountain J. Math., 28(2) (1998), 695-733 .
[9] Ronning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer.Math. Soc., 118(1) (1993), 189-196.
[10] Ruscheweyh, St., New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
[11] Salagean, G. S., Subclasses of univalent functions, Lecture Note in Math.(SpringerVerlag), 1013 (1983), 362-372 .
[12] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.
[13] Swapna, G., Venkateswarlu, B., and Thirupathi Reddy, P., Notes on meromorphic functions with positive coefficients involving polylogarithm function, The Bull. of Irkutsk State Uni. Series Math., (Accepted).

[^0]: ${ }^{1}$ Department of Mathematics, PRIME College, Modavalasa - 534 002, Visakhapatnam, A. P., India, e-mail: raninekkanti1111@gmail.com
 ${ }^{2}$ Department of Mathematics, Kakatiya University, Warangal- 506 009, Telangana, India, e-mail: reddypt2@gmail.com

 3* Corresponding author, Department of Mathematics, GITAM University, Doddaballapur562 163, Bengaluru North, India, e-mail: bvlmaths@gmail.com

