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Abstract

In this article, we investigate the uniqueness problem of meromorphic
functions when certain nonlinear differential polynomials generated by them
share a set of values with finite weight and obtain some results that gener-
alize the recent results due to P. Sahoo and G. Biswas [Filomat 32 (2018),
457-472]. Our results also improve and generalize the results due to H.Y. Xu
[J. Comput. Anal. Appl., 16 (2014), 942-954].
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1 Introduction, Definitions and Results

Throughout the paper, by a meromorphic function we shall always mean a
function that is meromorphic in the complex plane C. In what follows, we assume
that the reader is familiar with the standard notations of Nevanlinna value dis-
tribution theory such as T (r, f), m(r, f), N(r, f), N(r, f), S(r, f) and so on, that
can be found, for instance, in [5, 10, 20].

Let f and g be any two nonconstant meromorphic functions. For a ∈ C ∪
{∞} = C and S ⊂ C, we define

E(S, f) =
⋃
a∈S
{z : f(z)− a = 0, counting multiplicities},

E(S, f) =
⋃
a∈S
{z : f(z)− a = 0, ignoring multiplicities}.
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If E(S, f) = E(S, g), we say that f and g share the set S CM; if E(S, f) =
E(S, g), we say that f and g share the set S IM. As a special case, let S =
{a}, then we say that f and g share the value a CM (resp. IM), provided that
E(S, f) = E(S, g) (resp. E(S, f) = E(S, g)) (see [4]).

For a positive integer m, we denote by Em)(a; f) the set of all a-points of f
with multiplicities not greater than m, where an a-point is counted according to
its multiplicities. Also by Em)(a; f) we denote the set of distinct a-points of f

with multiplicities not exceeding m. If E∞)(a; f) = E∞)(a; g) for a ∈ C, we say

that f and g share the value a CM. We also define Em)(S, f) =
⋃
a∈S

Em)(a; f) and

Em)(S, f) =
⋃
a∈S

Em)(a; f) for any positive integer m. The research on the unique-

ness theory related to meromorphic functions has brought out a good number of
interesting results due to sharing of values by different functions. In fact, unique-
ness problems regarding differential polynomials and their shared values have been
studied in a large extent (see [1, 6, 9, 12, 15, 17, 18]). Recently, there has been
an increasing interest to consider the differential polynomials with the shared set
of values.

In 1997, C.C. Yang and X.H. Hua [19] proved the following result.

Theorem A. Let f and g be two nonconstant meromorphic functions, n ≥ 11
an integer and a ∈ C \ {0}. If fnf ′ and gng′ share the value a CM, then either
f = tg for some (n+ 1)th root of unity t or g(z) = c1e

cz, f(z) = c2e
−cz, where c,

c1, c2 are constants satisfying (c1c2)
n+1c2 = −a2.

Regarding Theorem A, one may ask the following question:

Question 1.1. Whether there exists a differential polynomial d such that for any
pair of nonconstant meromorphic functions f and g we can get f ≡ g whenever
d(f) and d(g) share one value CM?

Some of the earlier works in this direction can be found in [2, 3, 6, 8, 9, 11].
Among them, Fang-Fang [2] and Lin-Yi [11] gave an affirmative answer to the
above question and proved the following results respectively.

Theorem B. Let f and g be two nonconstant meromorphic functions and n be
a positive integer. If Ek)(1, f

n(f − 1)2f ′) = Ek)(1, g
n(g − 1)2g′) and one of the

following conditions is satisfied: (a) k ≥ 3, n ≥ 13, (b) k = 2, n ≥ 15, (c)
k = 1, n ≥ 23, then f ≡ g.

Theorem C. Let f and g be two nonconstant meromorphic functions satisfying
Θ(∞, f) > 2/(n+ 1), n ≥ 12 be an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share
1 CM, then f ≡ g.

In 2014, H.Y. Xu [16] investigated the uniqueness of meromorphic functions
for the case of two nonlinear differential polynomials sharing a set Sm containing
m roots of unity, namely Sm = {1, ω, ω2, . . . , ωm−1}, where ω = exp(2πm i) (m
being an integer) and obtained the following two results:
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Theorem D. Let f and g be two nonconstant meromorphic functions such that
one of f and g has only multiple poles, n and m(≥ 2) be two positive integers. For
any distinct a, b ∈ C\{0}, let Ek)(Sm, f

n(f−a)(f−b)f ′) = Ek)(Sm, g
n(g−a)(g−

b)g′) and let the expressions a+b
n+2g

∑n+1
j=0

(
f
g

)j
− ab

n+1

∑n
j=0

(
f
g

)j
and

∑n+2
j=0

(
f
g

)j
have no common simple zeros. If one of the following conditions is satisfied:

(a) k ≥ 3 : n > 4 + 8
m when 2 ≤ m ≤ 3 and n > 4 + 4

m when m ≥ 4;
(b) k = 2 : n > 4 + 11

m when 2 ≤ m ≤ 3 and n > 4 + 4
m when m ≥ 4;

(c) k = 1 : n > 4 + 20
m when 2 ≤ m ≤ 3 and n > 4 + 4

m when m ≥ 4,
then f ≡ g.

Theorem E. Let f and g be two nonconstant meromorphic functions, n,m(≥ 2)
be two positive integers. If Ek)(Sm, f

n(f −a)2f ′) = Ek)(Sm, g
n(g−a)2g′) and one

of the following conditions is satisfied:
(a) k ≥ 3 : n > 4 + 8

m ;
(b) k = 2 : n > max{4 + 4

m , 2 + 10
m };

(c) k = 1 : n > 4 + 20
m when 2 ≤ m ≤ 3 and n > 4 + 4

m when m ≥ 4,
then f ≡ g.

Remark 1.1. It is to be noticed that there are some lacunas in Lemma 2.3 (see
[16]) as well as in the lower bound of n in Theorem E (see [16]). In the proof of
Theorem E (though not given in details), Case 1 of Lemma 2.4 is needed, where
the lower bound of n is taken as n ≥ 8.

Recently, P. Sahoo and G. Biswas [14], overcoming the lacunas, extended
Theorems D and E and obtained the following results.

Theorem F. Let f and g be two nonconstant meromorphic functions such that
one of f and g has only multiple poles, n and m(≥ 2) be two positive inte-
gers. For any distinct a, b, c ∈ C \ {0}, let Ek)(Sm, f

n(f − a)(f − b)(f − c)f ′) =

Ek)(Sm, g
n(g − a)(g − b)(g − c)g′) and let the expressions a+b+c

n+3 g2
∑n+2

j=0

(
f
g

)j
−

ab+bc+ca
n+2 g

∑n+1
j=0

(
f
g

)j
+ abc

n+1

∑n
j=0

(
f
g

)j
and

∑n+3
j=0

(
f
g

)j
have no common simple

zeros. If one of the following conditions is satisfied:
(a) k ≥ 3 : n > 5 + 8

m when 2 ≤ m ≤ 3 and n > 5 + 3
m when m ≥ 4;

(b) k = 2 : n > 5 + 23
2m when 2 ≤ m ≤ 3 and n > 5 + 3

m when m ≥ 4;
(c) k = 1 : n > 5 + 22

m when 2 ≤ m ≤ 3 and n > 5 + 3
m when m ≥ 4;

then f ≡ tg, where tm = 1.

Theorem G. Let f and g be two nonconstant meromorphic functions such that
one of f and g has only multiple poles, n and m(≥ 2) be two positive integers.
For any distinct a, b ∈ C \ {0}, let Ek)(Sm, f

n(f − a)2(f − b)f ′) = Ek)(Sm, g
n(g−

a)2(g − b)g′) and let the expressions 2a+b
n+3 g

2
∑n+2

j=0

(
f
g

)j
− a2+2ab

n+2 g
∑n+1

j=0

(
f
g

)j
+

a2b
n+1

∑n
j=0

(
f
g

)j
and

∑n+3
j=0

(
f
g

)j
have no common simple zeros. If one of the

following conditions is satisfied:
(a) k ≥ 3 : n > 3 + 8

m when 2 ≤ m ≤ 3 and n > 5 + 2
m when m ≥ 4;
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(b) k = 2 : n > 3 + 11
m when 2 ≤ m ≤ 3 and n > 5 + 2

m when m ≥ 4;
(c) k = 1 : n > 3 + 20

m when 2 ≤ m ≤ 3 and n > 5 + 2
m when m ≥ 4;

then f ≡ tg, where tm = 1.

Theorem H. Let f and g be two nonconstant meromorphic functions such that
one of f and g has only multiple poles, n and m(≥ 2) be two positive integers.
For a ∈ C \ {0}, let Ek)(Sm, f

n(f − a)3f ′) = Ek)(Sm, g
n(g− a)3g′) and let the ex-

pressions 3a
n+3g

2
∑n+2

j=0

(
f
g

)j
− 3a2

n+2g
∑n+1

j=0

(
f
g

)j
+ a3

n+1

∑n
j=0

(
f
g

)j
and

∑n+3
j=0

(
f
g

)j
have no common simple zeros. If one of the following conditions is satisfied:

(a) k ≥ 3 : n > max{2 + 8
m , 10} when 2 ≤ m ≤ 3 and n > max{ 8

m , 10} when
m ≥ 4;

(b) k = 2 : n > max{2 + 10
m , 10} when 2 ≤ m ≤ 3 and n > max{10m , 10} when

m ≥ 4;
(c) k = 1 : n > max{2 + 16

m , 10} when 2 ≤ m ≤ 3 and n > max{16m , 10} when
m ≥ 4;
then f ≡ tg, where tm = 1.

In connection to Theorems D-H the following question is inevitable.

Question 1.2. Is it possible to deduce a generalized result in which all the Theo-
rems D-H will be included?

In this paper, we will concentrate on the above question and give a positive
answer by considering differential polynomials in a generalized form with respect
to that of Theorems D-H. Henceforth, we assume that a1, a2, . . . , aµ ∈ C\{0} such
that ai 6= aj (i, j = 1, 2, . . . , µ) and µ(≥ 2), s(≥ µ), η, si(≥ 1) (i = 1, 2, . . . , µ) are
nonnegative integers satisfying

∑µ
i=1 si = s and P (z) = (z−a1)s1(z−a2)s2 . . . (z−

aµ)sµ is a nonzero polynomial of degree s such that P has exactly η roots with
multiplicity greater than 1.

We collect all the ai’s counting multiplicities and arrange them in a sequence
according to their monotonically increasing subscripts. In what follows, by a′i we
shall mean the i-th term of the sequence {a′i}si=1, where

a′i = a1, 1 ≤ i ≤ s1
= a2, s1 + 1 ≤ i ≤ s1 + s2

. . .

= aµ, 1 +

µ−1∑
j=1

sj ≤ i ≤ s.

Therefore P (z) = (z− a1)s1(z− a2)s2 . . . (z− aµ)sµ = (z− a′1)(z− a′2) . . . (z− a′s).
However, f ′ has its usual meaning for any meromorphic function f .

We now state our main results of the paper.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions with one of
them having only multiple poles, n,m(≥ 2) be positive integers and Ek)(Sm, f

nP (f)f ′)
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= Ek)(Sm, g
nP (g)g′). If

∑s
i=1 a

′
i

n+ s g
s−1

n+s−1∑
ζ=0

(
f

g

)ζ
−

∑
1≤i<j≤s a

′
ia
′
j

n+s−1 gs−2
n+s−2∑
ζ=0

(
f

g

)ζ
+

. . .+
(−1)s−1a′1a

′
2...a

′
s

n+ 1

n∑
ζ=0

(
f

g

)ζ
and

n+s∑
ζ=0

(
f

g

)ζ
have no common simple zero and

one of the following conditions is satisfied:
(i) k ≥ 3 : n > max{µ′ + 2 + 8

m , s + 2 + max{0, 3−s+µm }} when 2 ≤ m ≤ 3 and

n > s+ 2 + max{0, 3−s+µm } when m ≥ 4;

(ii) k = 2 : n > max{µ′ + 2 + 20+µ
2m , s+ 2 + max{0, 3−s+µm }} when 2 ≤ m ≤ 3 and

n > s+ 2 +max{0, 3−s+µm } when m ≥ 4;

(iii) k = 1 : n > max{µ′+ 2 + 16+2µ
m , s+ 2 + max{0, 3−s+µm }} when 2 ≤ m ≤ 3 and

n > s+ 2 +max{0, 3−s+µm } when s > 2, m ≥ 4,
then f ≡ tg, where tm = 1 and µ′ = µ− η.

Taking s1 = s2 = . . . = sµ = 1 and µ = s in the above theorem we can obtain
the following corollary.

Corollary 1.1. Let f and g be two nonconstant meromorphic functions with one
of them having only multiple poles, s(≥ 2), n,m(≥ 2) be positive integers. For all
distinct ai ∈ C\{0}, let Ek)(Sm, f

n(f−a1)(f−a2) . . . (f−as)f ′) = Ek)(Sm, g
n(g−

a1)(g−a2) . . . (g−as)g′). If
∑s
i=1 ai
n+ s g

s−1
n+s−1∑
ζ=0

(
f

g

)ζ
−
∑

1≤i<j≤s aiaj

n+ s− 1
gs−2

n+s−2∑
ζ=0

(
f

g

)ζ
+ . . .+ (−1)s−1a1a2...as

n+1

n∑
ζ=0

(
f

g

)ζ
and

n+s∑
ζ=0

(
f

g

)ζ
have no common simple zero and

one of the following conditions is satisfied:
(i) k ≥ 3 : n > s+ 2 + 8

m when 2 ≤ m ≤ 3 and n > s+ 2 + 3
m when m ≥ 4;

(ii) k = 2 : n > s+ 2 + 20+s
2m when 2 ≤ m ≤ 3 and n > s+ 2 + 3

m when m ≥ 4;
(iii) k = 1 : n > s+2+16+2s

m when 2 ≤ m ≤ 3 and n > s+2+ 3
m when s > 2,m ≥ 4,

then f ≡ tg, where tm = 1.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions with one
of f and g having only multiple poles and n,m(≥ 2), s(> 2) be positive inte-
gers. Let Ek)(Sm, f

n(f − a)sf ′) = Ek)(Sm, g
n(g − a)sg′) where a ∈ C \ {0}. If

the expressions sC1
a

n+ s
gs−1

n+s−1∑
ζ=0

(
f

g

)ζ
−sC2

a2

n+ s− 1
gs−2

n+s−2∑
ζ=0

(
f

g

)ζ
+ . . .+

(−1)s−1as

n+ 1

n∑
ζ=0

(
f

g

)ζ
and

n+s∑
ζ=0

(
f

g

)ζ
have no common simple zero and one of the

following conditions is satisfied:
(i) k ≥ 3 : n > max{2 + 8

m , 3s + 1} when 2 ≤ m ≤ 3 and n > max{ 8
m , 3s + 1}

when m ≥ 4;
(ii) k = 2 : n > max{2 + 10

m , 3s + 1} when 2 ≤ m ≤ 3 and n > max{10m , 3s + 1}
when m ≥ 4;
(iii) k = 1 : n > max{2 + 16

m , 3s + 1} when 2 ≤ m ≤ 3 and n > max{16m , 3s + 1}
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when m ≥ 4,
then f ≡ tg, where tm = 1.

Remark 1.2. If we take s = 2 in Corollary 1.1, then it reduces to Theorem D
with a little improvement of lower bound of n for m ≥ 4, k ≥ 2. Thus Corollary
1.1 generalizes and improves Theorem D except for the case k = 1 when m ≥ 4.
Also Corollary 1.1 generalizes Theorem F.

Remark 1.3. If we take s = 3, µ = 2, η = 1 in Theorem 1.1, then it reduces to
Theorem G. Thus Theorem 1.1 generalizes Theorem G.

Remark 1.4. Theorem 1.2 generalizes Theorem H, since taking s = 3 in Theorem
1.2 it reduces to Theorem H. Again Theorem 1.2 is an extension of Theorem E.

Note 1.1. By following our technique it follows that for s = 2 in Theorem 1.2,
the bounds of n in case of k = 1 are obtained as: n > max{2 + 18

m , 3s+ 1} when
2 ≤ m ≤ 3 and n > max{18m , 3s+ 1} when m ≥ 4.

Although the standard definitions and notations of the value distribution the-
ory are available in [5, 20], we explain the following definitions which are used in
the paper.

Definition 1. [7] Let a ∈ C ∪ {∞}. We denote by N(r, a; f |= 1) the counting
function of simple a-points of f . For a positive integer p we denote by N(r, a; f |≤
p) the counting function of those a-points of f (counted with proper multiplicities)
whose multiplicities are not greater than p. By N(r, a; f |≤ p) we denote the
corresponding reduced counting function.

Analogously we can define N(r, a; f |≥ p) and N(r, a; f |≥ p).

Definition 2. [7] Let k be positive integer or infinity. We denote by Nk(r, a; f) the
counting function of a-points of f , where an a-point of multiplicity m is counted
m times if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + ...+N(r, a; f |≥ k).

Clearly N1(r, a; f) = N(r, a; f).

Definition 3. [20, p. 222] Let f and g be nonconstant meromorphic functions

such that f and g share 1 IM. We denote by N
1)
E (r, 1; f) the counting function of

common simple 1-points of f and g.

2 Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1. [20, p. 36, p. 39] Suppose that f is a nonconstant meromorphic
function in the complex plane and k is a positive integer. Then

T (r, f (k)) ≤ T (r, f) + kN(r,∞; f) + S(r, f).
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and

N(r, 0; f (k)) ≤ N(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.2. [13] Let f be a nonconstant meromorphic function, ai(i = 0, 1, 2,
. . . , p), bj(j = 0, 1, 2, . . . , q) be constants such that ap 6= 0 and bq 6= 0 and let
℘(f) =

∑p
i=0 aif

i/
∑q

j=0 bjf
j be an irreducible rational function in f . Then

T (r, ℘(f)) = dT (r, f) + S(r, f), where d = max{p, q}.

Lemma 2.3. Let f and g be two nonconstant meromorphic functions and s(≥ 2),
n,m be positive integers such that n > 2

m + 4
m2 −1. If f or g is meromorphic func-

tion having only multiple poles and the two expressions
∑s
i=1 ai
n+ s g

s−1
n+s−1∑
ζ=0

(
f

g

)ζ
−∑

1≤i<j≤s aiaj

n+ s− 1
gs−2

n+s−2∑
ζ=0

(
f

g

)ζ
+. . .+

(−1)s−1a1a2 . . . as
n+ 1

n∑
ζ=0

(
f

g

)ζ
and

n+s∑
ζ=0

(
f

g

)ζ
have no common simple zero, andfn+s+1

n+s+1 −

s∑
i=1

ai

n+s f
n+s +

∑
1≤i<j≤s

aiaj

n+s−1 fn+s−1 − . . .+ (−1)sa1a2...as
n+1 fn+1

m

≡

gn+s+1

n+s+1 −

s∑
i=1

ai

n+s g
n+s +

∑
1≤i<j≤s

aiaj

n+s−1 gn+s−1 − . . .+ (−1)sa1a2...as
n+1 gn+1

m

,

where ai ∈ C \ {0}, i = 1, 2, . . . , s, then f ≡ tg, where tm = 1.

Proof. From the assumption of the lemma it follows that

fn+s+1

n+ s+ 1
−

s∑
i=1

ai

n+ s
fn+s +

∑
1≤i<j≤s

aiaj

n+ s− 1
fn+s−1 − . . .+ (−1)sa1a2 . . . as

n+ 1
fn+1

≡ t

 gn+s+1

n+ s+ 1
−

s∑
i=1

ai

n+ s
gn+s +

∑
1≤i<j≤s

aiaj

n+ s− 1
gn+s−1 − . . .+ (−1)sa1a2 . . . as

n+ 1
gn+1

 ,

(2.1)

where tm = 1. From (2.1) we get that f and g share ∞ CM. Without loss of
generality, from the assumption of the lemma we may suppose that g has some
multiple poles. Let h = f

g . Suppose that h is not constant. Then from (2.1), we
have

A0g
s(hn+s+1 − t) +A1g

s−1(hn+s − t) + . . .+As−1g(hn+2 − t) +As(h
n+1 − t) ≡ 0,

i.e., A0g
s = −A1g

s−1 (hn+s − t)
(hn+s+1 − t)

−A2g
s−2 (hn+s−1 − t)

(hn+s+1 − t)
− . . .
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−As
(hn+1 − t)

(hn+s+1 − t)
, (2.2)

whereA0 = 1
n+s+1 , A1 = −

s∑
i=1

ai

n+ s
, A2 =

∑
1≤i<j≤s

aiaj

n+ s− 1
, . . . , As =

(−1)sa1a2 . . . as
n+ 1

.

Let z0 be a pole of g with multiplicity p0(≥ 2), which is not a zero of h− vk,r,
where (vk,r)

n+s+1 = t = ωr (k = 0, 1, 2, ..., n + s; r = 0, 1, 2, ...,m − 1) such that
ω = cos 2π

m + i sin 2π
m . Then from (2.2), we have sp0 = (s− 1)p0 i.e., p0 = 0. Thus

we arrive at a contradiction. Therefore, we see that the poles of g are precisely
the zeros of h− vk,r.

Let z1 be a zero of h − vk,r with multiplicity q1, which is a pole of g with
multiplicity p1. Then from (2.2), we get sp1 = q1 + (s− 1)p1 i.e., p1 = q1. Since g
has no simple pole, it follows that such points are multiple zeros of h− vk,r. Now,
for r = 0, 1, 2, ...,m− 1, we obtain from (2.2) that

A0g
s = −A1g

s−1(hn+s − ωr) +A2g
s−2(hn+s−1 − ωr) + . . .+As(h

n+1 − ωr)
hn+s+1 − ωr

.(2.3)

Suppose that z2 is a simple zero of h − vk,r (k = 0, 1, 2, . . . , n + s; r =
0, 1, 2, ...,m − 1) which is also a zero of multiplicity q2(≥ 2) of numerator of
right hand side of (2.3). Then from (2.3), we see that z2 would be a zero of gs

of order (q2 − 1). Therefore z2 would be a zero of (hn+1 − ωr). We observe that
the number of common factors of (hn+1 − ωr) and (hn+s+1 − ωr) are less than or
equal to the number of common factors of (hm(n+1) − 1) and (hm(n+s+1) − 1) for
r = 0, 1, 2, ...,m−1. Since the greatest common divisor of m(n+1) and m(n+s+1)
cannot exceed sm, it follows that hn+1 − ωr and hn+s+1 − ωr may have at most
sm common factors for r = 0, 1, 2, ...,m − 1. Moreover, a nonconstant meromor-
phic function cannot have more than two Picard exceptional values. Therefore we
see that h − vk,r has multiple zeros for at least m(n + s + 1) − sm − 2 values of
k ∈ {0, 1, 2, ...,m(n+ s+ 1)− 1} when r = 0, 1, 2, ...,m− 1. Thus, Θ(vk,r;h) ≥ 1

2
for at least m(n + s + 1) − sm − 2 values of k ∈ {0, 1, 2, ...,m(n + s + 1) − 1}
where r = 0, 1, 2, ...,m− 1, which is a contradiction as n > 2

m + 4
m2 − 1. Hence h

is a constant. If h 6= t, then from (2.2), it follows that the function g becomes a
constant, which is impossible. Hence we get f ≡ tg, where tm = 1. This completes
the proof of the lemma.

Lemma 2.4. (see [2]) Let f and g be two nonconstant meromorphic functions,
and let k be a positive integer. If Ek)(1, f) = Ek)(1, g), then one of the following
cases holds:

(i) T (r, f) + T (r, g) ≤ N2(r,∞; f) +N2(r, 0; f) +N2(r,∞; g) +N2(r, 0; g)

+N(r, 1; f) +N(r, 1; g)−N1)
E (r, 1; f)

+N(r, 1; f | ≥ k + 1) +N(r, 1; g| ≥ k + 1)

+S(r, f) + S(r, g),

(ii) f = (B+1)g+(A−B−1)
Bg+(A−B) , where A( 6= 0), B are constants.
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Lemma 2.5. Let f and g be two nonconstant meromorphic functions and n, m,
µ, s(≥ µ), si(i = 1, 2, . . . , µ) be any positive integers such that n+s > 1+ 4s

µ . Then

(fn(f − a1)s1(f − a2)s2 . . . (f − aµ)sµf ′)m (gn(g − a1)s1(g − a2)s2 . . . (g − aµ)sµg′)m

6≡ 1, where ai ∈ C \ {0}, ai 6= aj (i, j = 1, 2, . . . , µ) and
∑µ

i=1 si = s.

Proof. Let, if possible(
fn(f − a1)s1(f − a2)s2 . . . (f − aµ)sµf ′

)m (
gn(g − a1)s1(g − a2)s2 ...(g − aµ)sµg′

)m
≡ 1.

Therefore we must have

fn(f − a1)s1(f − a2)s2 . . . (f − aµ)sµf ′gn(g − a1)s1(g − a2)s2 . . . (g − aµ)sµg′

≡ t,(2.4)

where tm = 1.
Since each ai 6= aj (i,j=1,2,. . . ,µ), we may count the zeros and poles of f and

g as follows: Let z0 be a zero of f with multiplicity p0(≥ 1). Then, from (2.4) it
follows that z0 is a pole of g with multiplicity q0(≥ 1), say. Then (n+ 1)p0 − 1 =
(n+ s+ 1)q0 + 1 i.e., sq0 = (n+ 1)(p0 − q0)− 2 ≥ n− 1, i.e., q0 ≥ n−1

s . Hence

(n+ 1)p0 ≥
(n+ s+ 1)(n− 1)

s
+ 2 i.e., p0 ≥

n+ s− 1

s
. (2.5)

Let zi be a zero of f − ai (i = 1, 2, . . . , µ) with multiplicity pi(≥ 1). Then it
is a pole of g with multiplicity qi(≥ 1), say. Therefore we have sipi + pi − 1 =
(n+ s+ 1)qi + 1 ≥ n+ s+ 2

i.e., pi ≥
n+ s+ 3

si + 1
for i = 1, 2, . . . , µ. (2.6)

Since a pole of f is either a zero of g(g − a1)(g − a2) . . . (g − aµ) or a zero of g′,
using (2.5), (2.6) and

∑µ
i=1 si = s, we get

N(r,∞; f) ≤ N(r, 0; g) +

µ∑
i=1

N(r, ai; g) +N0(r, 0; g′) + S(r, f) + S(r, g)

≤ s

n+ s− 1
N(r, 0; g) +

µ∑
i=1

si + 1

n+ s+ 3
N(r, ai; g) +N0(r, 0; g′)

+S(r, f) + S(r, g)

≤
(

s

n+ s− 1
+

µ+ s

n+ s+ 3

)
T (r, g) +N0(r, 0; g′) + S(r, f)

+S(r, g), (2.7)

where N0(r, 0; g′) denotes the reduced counting function of those zeros of g′ which
are not the zeros of g(g − a1)(g − a2) . . . (g − aµ). By the second fundamental
theorem of Nevanlinna and from (2.5)-(2.7) we get

µT (r, f) ≤ N(r,∞; f) +N(r, 0; f) +

µ∑
i=1

N(r, ai; f)−N0(r, 0; f ′) + S(r, f)
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≤
(

s

n+ s− 1
+

µ+ s

n+ s+ 3

)
{T (r, f) + T (r, g)}+N0(r, 0; g′)

−N0(r, 0; f ′) + S(r, f) + S(r, g). (2.8)

Similarly, we get

µT (r, g) ≤
(

s

n+ s− 1
+

µ+ s

n+ s+ 3

)
{T (r, f) + T (r, g)}+N0(r, 0; f ′)

−N0(r, 0; g′) + S(r, f) + S(r, g). (2.9)

Adding (2.8) and (2.9) we obtain(
µ− 2s

n+ s− 1
− 2(µ+ s)

n+ s+ 3

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

Since n+ s > 1 + 4s
µ , we arrive at a contradiction. This proves the lemma.

Lemma 2.6. Let f and g be two nonconstant meromorphic functions with one
of f, g has only multiple poles and n,m(≥ 2), µ(≥ 2), s(≥ µ) be positive integers
such that n > s+2+max{0, 3−s+µm }. Let F = fnP (f)f ′ and G = gnP (g)g′ and let
s∑
i=1

a′i

n+ sg
s−1

n+s−1∑
ζ=0

(
f

g

)ζ
−

∑
1≤i<j≤s

a′ia
′
j

n+ s− 1 g
s−2

n+s−2∑
ζ=0

(
f

g

)ζ
+ . . .+

(−1)s−1a′1a
′
2...a

′
s

n+ 1

n∑
ζ=0

(
f

g

)ζ
and

n+s∑
ζ=0

(
f

g

)ζ
have no common simple zero, and

Fm =
(B + 1)Gm +A−B − 1

BGm +A−B
, (2.10)

where A(6= 0), B are constants, then f ≡ tg, where tm = 1.

Proof. Let

R(z) =
zn+s+1

n+ s+ 1
−

s∑
i=1

a′i

n+ s
zn+s +

∑
1≤i<j≤s

a′ia
′
j

n+ s− 1
zn+s−1

− . . .+ (−1)sa′1a
′
2 . . . a

′
s

n+ 1
zn+1. (2.11)

Then we have

F = (R(f))′ = fn(f − a1)s1(f − a2)s2 . . . (f − aµ)sµf ′,

G = (R(g))′ = gn(g − a1)s1(g − a2)s2 . . . (g − aµ)sµg′.
(2.12)

Using Lemmas 2.1, 2.2 and
∑µ

i=1 si = s we obtain

T (r, F ) ≤ T (r, fn(f − a1)s1(f − a2)s2 ...(f − aµ)sµ) + T (r, f ′)

≤ (n+ s+ 2)T (r, f) + S(r, f).
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Since
∑µ

i=1 si = s, we have

(n+ s)T (r, f) = T (r, fn(f − a1)s1(f − a2)s2 ...(f − aµ)sµ)

≤ T (r, F ) + T (r, f ′) +O(1)

≤ T (r, F ) + 2T (r, f) + S(r, f).

So, we have

(n+ s− 2)T (r, f) + S(r, f) ≤ T (r, F ) ≤ (n+ s+ 2)T (r, f) + S(r, f).

Hence we get S(r, F ) = S(r, f). Similarly, we can get S(r,G) = S(r, g).
Now employing Lemma 2.2 we get

(n+ s+ 1)T (r, f) = T (r,R(f))

≤ T (r, (R(f))′) +N(r, 0;R(f))−N(r, 0; (R(f))′) + S(r, f)

= T (r, F ) +N(r, 0; f) +

s∑
j=1

N(r, αj ; f)−
µ∑
i=1

siN(r, ai; f)

−N(r, 0; f ′) + S(r, f), (2.13)

where α1, α2, . . . , αs are the roots of the equation

1

n+ s+ 1
zs =

s∑
i=1

a′i

n+ s
zs−1 −

∑
1≤i<j≤s

a′ia
′
j

n+ s− 1
zs−2 + . . .+ (−1)s−1

a′1a
′
2 . . . a

′
s

n+ 1
.

Similarly, we get

(n+ s+ 1)T (r, g) ≤ T (r,G) +N(r, 0; g) +

s∑
j=1

N(r, αj ; g)−
µ∑
i=1

siN(r, ai; g)

−N(r, 0; g′) + S(r, g). (2.14)

Now, without any loss of generality we suppose that there exists a set M with
infinite measure such that T (r, g) ≤ T (r, f), r ∈ M. We now consider three cases
as follows:

Case I. Suppose B 6= 0,−1. Then from (2.10), we see that N(r, B+1
B ;Fm) =

N(r,∞;Gm). By the second fundamental theorem of Nevanlinna and S(r, Fm) =
S(r, f), we get

mT (r, F ) = T (r, Fm)

≤ N(r,∞;Fm) +N(r, 0;Fm) +N

(
r,
B + 1

B
;Fm

)
+ S(r, f)

= N(r,∞;Fm) +N(r, 0;Fm) +N(r,∞;Gm) + S(r, f)

≤ N(r,∞; f) +N(r, 0; f) +

µ∑
i=1

N(r, ai; f) +N(r, 0; f ′)
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+N(r,∞; g) + S(r, f). (2.15)

Using (2.13), (2.15) and noting that
∑µ

i=1 si = s, we get

(n+ s+ 1)T (r, f) ≤ 1

m
N(r,∞; f) +

(
1 +

1

m

)
N(r, 0; f) +

s∑
j=1

N(r, αj ; f)

+

µ∑
i=1

(
1

m
− si

)
N(r, ai; f) +

1

m
N(r,∞; g) + S(r, f)

≤
(
s+ 1 +

2

m

)
T (r, f) +

1

m
T (r, g) + S(r, f)

i.e.,
(
n− 3

m

)
T (r, f) ≤ S(r, f), a contradiction as n > s+2+max{0, 3−s+µm } > 3

m .

Case II. Suppose that B = 0. From (2.10), we get that N(r, A−1A ;Fm) =
N(r, 0;Gm). We consider the following two subcases:

Subase (i). A 6= 1. Then similarly as in (2.15), using Nevanlinna’s second
fundamental theorem and S(r, Fm) = S(r, f), we get

mT (r, F ) ≤ N(r,∞;Fm) +N(r, 0;Fm) +N

(
r,
A− 1

A
;Fm

)
+ S(r, f)

≤ N(r,∞; f) +N(r, 0; f) +

µ∑
i=1

N(r, ai; f) +N(r, 0; f ′) +N(r, 0; g)

+

µ∑
i=1

N(r, ai; g) +N(r, 0; g′) + S(r, f). (2.16)

Using
∑µ

i=1 si = s we get from (2.13) and (2.16),

(n+ s+ 1)T (r, f) ≤
(
s+ 1 +

2

m

)
T (r, f) +

(
µ+ 3

m

)
T (r, g) + S(r, f)

≤
(
s+ 1 +

µ+ 5

m

)
T (r, f) + S(r, f)

i.e.,
(
n− 5+µ

m

)
T (r, f) ≤ S(r, f), a contradiction as n > s+ 2 +max{0, 3−s+µm } >

5+µ
m .

Subase (ii). A = 1. Then from (2.10), we obtain Fm = Gm, i.e., F = tG,
where tm = 1. Integrating we get, R(f) = tR(g) + t0, where t0 is a constant.

If t0 6= 0, by Nevanlinna’s second fundamental theorem and Lemma 2.2 we get

(n+ s+ 1)T (r, f) = T (r,R(f))

≤ N(r,∞;R(f)) +N(r, 0;R(f)) +N(r, t0;R(f)) + S(r, f)

≤ N(r,∞;R(f)) +N(r, 0;R(f)) +N(r, 0;R(g)) + S(r, f)

≤ N(r,∞; f) +N(r, 0; f) +
s∑
j=1

N(r, αj ; f) +N(r, 0; g)
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+

s∑
j=1

N(r, αj ; g) + S(r, f)

≤ (s+ 2)T (r, f) + (s+ 1)T (r, g) + S(r, f)

≤ (2s+ 3)T (r, f) + S(r, f)

i.e., (n − s − 2)T (r, f) ≤ S(r, f), a contradiction as n > s + 2 + max{0, 3−s+µm }.
Thus t0 = 0 and hence R(f) = tR(g). Then by Lemma 2.3, we get f ≡ tg, where
tm = 1.

Case III. Let B = −1. Proceeding in a similar manner as in the proof of Case
II, we can get FmGm ≡ 1, a contradiction by Lemma 2.5. This completes the
proof of the lemma.

Lemma 2.7. Let f and g be two nonconstant meromorphic functions and n,m, s(>
1) be positive integers such that n > 3s+ 1. Let F = fn(f −a)sf ′ and G = gn(g−
a)sg′, where a ∈ C \ {0}, and let one of f and g is meromorphic function having

and only having multiple poles. If the two expressions sC1
a

n+ s
gs−1

n+s−1∑
ζ=0

(
f

g

)ζ
−

sC2
a2

n+ s− 1
gs−2

n+s−2∑
ζ=0

(
f

g

)ζ
+. . .+

(−1)s−1as

n+ 1

n∑
ζ=0

(
f

g

)ζ
and

n+s∑
ζ=0

(
f

g

)ζ
have no

common simple zero, and (2.10) holds, then f ≡ tg, where tm = 1.

Proof. Let

R1(z) =
1

n+ s+ 1
zn+s+1 − sC1

a

n+ s
zn+s + sC2

a2

n+ s− 1
zn+s−1

− . . .+ (−1)sas

n+ 1
zn+1.

Then we have F = (R1(f))′ = fn(f − a)sf ′ and G = (R1(g))′ = gn(g − a)sg′.
Now proceeding similarly as in the proof of Lemma 2.6, and using Lemmas 2.3
and 2.5 we can deduce the conclusion of the lemma.

3 Proof of the Theorems

Proof of Theorem 1.1. Let F and G be given as in equation (2.12) and R(z) as in
(2.11). From the assumptions of Theorem 1.1 we have, Ek)(Sm, F ) = Ek)(Sm, G)
i.e., Ek)(1, F

m) = Ek)(1, G
m). It is obvious that

N2(r, 0;Fm) +N2(r,∞;Fm) ≤ 2N(r, 0; f) + 2

µ∑
i=1

N(r, ai; f) + 2N(r, 0; f ′)

+2N(r,∞; f) + S(r, f), (3.1)

and

N2(r, 0;Gm) +N2(r,∞;Gm) ≤ 2N(r, 0; g) + 2

µ∑
i=1

N(r, ai; g) + 2N(r, 0; g′)
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+2N(r,∞; g) + S(r, g). (3.2)

Without loss of generality we may assume that the first η elements in the sequence
{s1, s2, . . . , sµ} are greater than 1. We now discuss the following three cases.

Case 1. Let k ≥ 3. We have

N(r, 1;Fm) +N(r, 1;Gm) +N(r, 1;Fm| ≥ k + 1)

+N(r, 1;Gm| ≥ k + 1)−N1)
E (r, 1;Fm)

≤ 1

2
N(r, 1;Fm) +

1

2
N(r, 1;Gm) + S(r, Fm) + S(r,Gm)

≤ m

2
T (r, F ) +

m

2
T (r,G) + S(r, F ) + S(r,G). (3.3)

Let us suppose that Fm and Gm satisfy (i) of Lemma 2.4. Then using Lemma 2.2
and (3.3) we obtain

mT (r, F ) +mT (r,G) = T (r, Fm) + T (r,Gm)

≤ m

2
T (r, F ) +

m

2
T (r,G) +N2(r, 0;Fm) +N2(r,∞;Fm)

+N2(r, 0;Gm) +N2(r,∞;Gm) + S(r, F ) + S(r,G)

i.e., T (r, F ) + T (r,G) ≤ 2

m
N2(r,∞;Fm) +

2

m
N2(r, 0;Fm) +

2

m
N2(r,∞;Gm)

+
2

m
N2(r, 0;Gm) + S(r, F ) + S(r,G). (3.4)

We now consider the following two subcases.

Subcase 1.1 Assume that 2 ≤ m ≤ 3. Then
(
4
m − si

)
≤ 0, when si ≥ 2

(i = 1, 2, . . . , η) and
(
4
m − si

)
≤ 1, when si = 1 (i = η + 1, η + 2, . . . , µ). From

(2.13), (2.14), (3.1), (3.2), (3.4) and noting that µ′ = µ− η we obtain

(n+ s+ 1)T (r, f) + (n+ s+ 1)T (r, g)

≤
(

1 +
4

m

)
N(r, 0; f) +N(r, 0; f ′) +

s∑
j=1

N(r, αj ; f) +

µ∑
i=η+1

N(r, ai; f)

+
4

m
N(r,∞; f) +

(
1 +

4

m

)
N(r, 0; g) +N(r, 0; g′) +

s∑
j=1

N(r, αj ; g)

+

µ∑
i=η+1

N(r, ai; g) +
4

m
N(r,∞; g) + S(r, f) + S(r, g)

≤
(
s+ µ′ + 3 +

8

m

)
T (r, f) +

(
s+ µ′ + 3 +

8

m

)
T (r, g) + S(r, f) + S(r, g),

which implies(
n− µ′ − 2− 8

m

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g). (3.5)
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Since n > max{µ′ + 2 + 8
m , s+ 2 +max{0, 3−s+µm }}, we get a contradiction from

(3.5). Then from Lemma 2.4, we have

Fm =
(B + 1)Gm +A−B − 1

BGm +A−B
,

where A(6= 0), B are constants. Thus, by Lemma 2.6 and n > max{µ′ + 2 +
8
m , s+ 2 +max{0, 3−s+µm }}, we get f ≡ tg, where tm = 1.

Subcase 1.2 Next we assume that m ≥ 4. Then
(
4
m − si

)
≤ 0 for si ≥ 1 (i =

1, 2, . . . , µ). From (2.13), (2.14), (3.1), (3.2) and (3.4) we obtain

(n+ s+ 1)T (r, f) + (n+ s+ 1)T (r, g)

≤
(

1 +
4

m

)
N(r, 0; f) +

s∑
j=1

N(r, αj ; f) +
4

m
N(r,∞; f) +

(
1 +

4

m

)
N(r, 0; g)

+

s∑
j=1

N(r, αj ; g) +
4

m
N(r,∞; g) + S(r, f) + S(r, g)

≤
(
s+ 1 +

8

m

)
T (r, f) +

(
s+ 1 +

8

m

)
T (r, g) + S(r, f) + S(r, g)

From this we obtain(
n− 8

m

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g), (3.6)

a contradiction since n > s + 2 + max{0, 3−s+µm } > 8
m . So from Lemma 2.4, we

obtain that (2.10) holds. Thus, by Lemma 2.6, we have f ≡ tg, where tm = 1.

Case 2. Let k = 2. We can easily see that

N(r, 1;Fm) +N(r, 1;Gm) +
1

2
N(r, 1;Fm| ≥ 3) +

1

2
N(r, 1;Gm| ≥ 3)

−N1)
E (r, 1;Fm)

≤ 1

2
N(r, 1;Fm) +

1

2
N(r, 1;Gm) + S(r, F ) + S(r,G)

≤ m

2
T (r, F ) +

m

2
T (r,G) + S(r, F ) + S(r,G). (3.7)

Assume that Fm and Gm satisfy (i) of Lemma 2.4. Then using Lemma 2.2 and
(3.7) we obtain

mT (r, F ) +mT (r,G) = T (r, Fm) + T (r,Gm)

≤ m

2
T (r, F ) +

m

2
T (r,G) +N2(r, 0;Fm) +N2(r,∞;Fm)

+N2(r, 0;Gm) +N2(r,∞;Gm) +
1

2
N(r, 1;Fm| ≥ 3)

+
1

2
N(r, 1;Gm| ≥ 3) + S(r, F ) + S(r,G),



180 Samar Halder and Pulak Sahoo

i.e., T (r, F ) + T (r,G) ≤ 2

m
N2(r,∞;Fm) +

2

m
N2(r, 0;Fm) +

2

m
N2(r,∞;Gm)

+
2

m
N2(r, 0;Gm) +

1

m
N(r, 1;Fm| ≥ 3)

+
1

m
N(r, 1;Gm| ≥ 3) + S(r, F ) + S(r,G). (3.8)

Now

N(r, 1;Fm| ≥ 3) ≤ 1

2
N

(
r,∞;

Fm

(Fm)′

)
≤ 1

2
N

(
r,∞;

(Fm)′

Fm

)
+ S(r, F )

≤ 1

2
N(r,∞;Fm) +

1

2
N(r, 0;Fm) + S(r, F )

≤ 1

2
N(r,∞; f) +

1

2
N(r, 0; f) +

1

2

µ∑
i=1

N(r, ai; f)

+
1

2
N(r, 0; f ′) + S(r, f). (3.9)

Similarly,

N(r, 1;Gm| ≥ 3) ≤ 1

2
N(r,∞; g) +

1

2
N(r, 0; g) +

1

2

µ∑
i=1

N(r, ai; g)

+
1

2
N(r, 0; g′) + S(r, g). (3.10)

We now consider the following two subcases.
Subcase 2.1 We assume that 2 ≤ m ≤ 3. Then

(
4
m − si

)
≤ 0, when si ≥ 2

(i = 1, 2, . . . , η) and
(
4
m − si

)
≤ 1, when si = 1 (i = η + 1, η + 2, . . . , µ). From

(2.13), (2.14), (3.1), (3.2) and (3.8)-(3.10) we obtain

(n+ s+ 1)T (r, f) + (n+ s+ 1)T (r, g)

≤ (1 +
9

2m
)N(r, 0; f) +

s∑
j=1

N(r, αj ; f) +

µ∑
i=η+1

N(r, ai; f) +
1

2m

µ∑
i=1

N(r, ai; f)

+
9

2m
N(r,∞; f) +

(
1 +

1

2m

)
N(r, 0; f ′) +

s∑
j=1

N(r, αj ; g) +

µ∑
i=η+1

N(r, ai; g)

+
1

2m

µ∑
i=1

N(r, ai; g) +
9

2m
N(r,∞; g) +

(
1 +

9

2m

)
N(r, 0; g)

+

(
1 +

1

2m

)
N(r, 0; g′) + S(r, f) + S(r, g)

≤
(
s+ µ′ + 3 +

20 + µ

2m

)
T (r, f) +

(
s+ µ′ + 3 +

20 + µ

2m

)
T (r, g)

+S(r, f) + S(r, g).

Therefore we have(
n− µ′ − 2− 20 + µ

2m

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
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contradicts with n > max{µ′+2+ 20+µ
2m , s+2+max{0, 3−s+µm }}. Thus by Lemma

2.4, we obtain (2.10). Hence f ≡ tg, by Lemma 2.6, where tm = 1.

Subcase 2.2 Next we assume that m ≥ 4. Then
(
4
m − si

)
≤ 0 for si ≥ 1 (i =

1, 2, . . . , µ). Proceeding similarly as in Subcase 1.2, we obtain

(n+ s+ 1)T (r, f) + (n+ s+ 1)T (r, g)

≤
(

1 +
9

2m

)
N(r, 0; f) +

s∑
j=1

N(r, αj ; f) +
1

2m

µ∑
i=1

N(r, ai; f) +
9

2m
N(r,∞; f)

+
1

2m
N(r, 0; f ′) +

(
1 +

9

2m

)
N(r, 0; g) +

s∑
j=1

N(r, αj ; g) +
1

2m

µ∑
i=1

N(r, ai; g)

+
9

2m
N(r,∞; g) +

1

2m
N(r, 0; g′) + S(r, f) + S(r, g)

i.e.,

(
n− 20 + µ

2m

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

Since n > s + 2 + max{0, 3−s+µm } > 20+µ
2m , we get a contradiction. Therefore, by

(ii) of Lemma 2.4 and Lemma 2.6, we obtain f ≡ tg, where tm = 1.

Case 3. Let k = 1. We have

N(r, 1;Fm) +N(r, 1;Gm)−N1)
E (r, 1;Fm)

≤ 1

2
N(r, 1;Fm) +

1

2
N(r, 1;Gm) + S(r, F ) + S(r,G)

≤ m

2
T (r, F ) +

m

2
T (r,G) + S(r, F ) + S(r,G). (3.11)

Suppose that Fm and Gm satisfy (i) of Lemma 2.4. Then by Lemma 2.2 and
(3.11) we obtain

mT (r, F ) +mT (r,G) = T (r, Fm) + T (r,Gm)

≤ m

2
T (r, F ) +

m

2
T (r,G) +N2(r, 0;Fm) +N2(r,∞;Fm)

+N2(r, 0;Gm) +N2(r,∞;Gm) +N(r, 1;Fm| ≥ 2)

+N(r, 1;Gm| ≥ 2) + S(r, F ) + S(r,G).

i.e., T (r, F ) + T (r,G) ≤ 2

m
N2(r,∞;Fm) +

2

m
N2(r, 0;Fm) +

2

m
N2(r,∞;Gm)

+
2

m
N2(r, 0;Gm) +

2

m
N(r, 1;Fm| ≥ 2)

+
2

m
N(r, 1;Gm| ≥ 2) + S(r, F ) + S(r,G). (3.12)

Now

N(r, 1;Fm| ≥ 2) ≤ N

(
r,∞;

Fm

(Fm)′

)
≤ N

(
r,∞;

(Fm)′

Fm

)
+ S(r, F )
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≤ N(r,∞;Fm) +N(r, 0;Fm) + S(r, F )

≤ N(r,∞; f) +N(r, 0; f) +

µ∑
i=1

N(r, ai; f)

+N(r, 0; f ′) + S(r, f). (3.13)

Similarly,

N(r, 1;Gm| ≥ 2) ≤ N(r,∞; g) +N(r, 0; g) + +

µ∑
i=1

N(r, ai; g)

+N(r, 0; g′) + S(r, g). (3.14)

Subcase 3.1 We assume that 2 ≤ m ≤ 3. Then
(
4
m − si

)
≤ 0, when si ≥ 2

(i = 1, 2, . . . , η) and
(
4
m − si

)
≤ 1, when si = 1 (i = η + 1, η + 2, . . . , µ). From

(2.13), (2.14), (3.1), (3.2) and (3.12)-(3.14) we obtain

(n+ s+ 1)T (r, f) + (n+ s+ 1)T (r, g)

≤
(

1 +
6

m

)
N(r, 0; f) +

s∑
j=1

N(r, αj ; f) +

µ∑
i=η+1

N(r, ai; f) +
2

m

µ∑
i=1

N(r, ai; f)

+
6

m
N(r,∞; f) +

(
1 +

2

m

)
N(r, 0; f ′) +

(
1 +

6

m

)
N(r, 0; g)

+
s∑
j=1

N(r, αj ; g) +

µ∑
i=η+1

N(r, ai; g) +
2

m

µ∑
i=1

N(r, ai; g) +
6

m
N(r,∞; g)

+

(
1 +

2

m

)
N(r, 0; g′) + S(r, f) + S(r, g)

≤
(
s+ µ′ + 3 +

16 + 2µ

m

)
T (r, f) +

(
s+ µ′ + 3 +

16 + 2µ

m

)
T (r, g)

+S(r, f) + S(r, g),

which implies(
n− µ′ − 2− 16 + 2µ

m

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

Since n > max{µ′ + 2 + 16+2µ
m , s + 2 + max{0, 3−s+µm }}, we get a contradiction.

Then from Lemma 2.4, we conclude that (2.10) holds. Thus, applying Lemma 2.6
we obtain f ≡ tg, where tm = 1.

Subcase 3.2 Next we suppose that m ≥ 4. Then proceeding similarly as in
Subcase 1.2 and Subcase 3.1 we obtain

(n+ s+ 1)T (r, f) + (n+ s+ 1)T (r, g)

≤
(

1 +
6

m

)
N(r, 0; f) +

s∑
j=1

N(r, αj ; f) +
2

m

µ∑
i=1

N(r, ai; f) +
6

m
N(r,∞; f)
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+
2

m
N(r, 0; f ′) +

(
1 +

6

m

)
N(r, 0; g) +

s∑
j=1

N(r, αj ; g) +
2

m

µ∑
i=1

N(r, ai; g)

+
6

m
N(r,∞; g) +

2

m
N(r, 0; g′) + S(r, f) + S(r, g).

From this we have(
n− 16 + 2µ

m

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction as n > s + 2 + max{0, 3−s+µm } ≥ 16+2µ
m for m ≥ 4 and for all s

satisfying s > 2, s ≥ µ. Then using (ii) of Lemma 2.4 and Lemma 2.6 we obtain
f ≡ tg, where tm = 1. This proves Theorem 1.1.

Proof of Theorem 1.2. Arguing similarly as in the proof of Theorem 1.1 and ap-
plying Lemma 2.7, we can obtain the conclusion of the theorem. Here we omit
the details.
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